
www.manaraa.com

Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

8-1-2010 

Toward a damage-based finite element fracture theory and Toward a damage-based finite element fracture theory and 

application to ductile metals application to ductile metals 

Thomas Neil Williams 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Williams, Thomas Neil, "Toward a damage-based finite element fracture theory and application to ductile 
metals" (2010). Theses and Dissertations. 4748. 
https://scholarsjunction.msstate.edu/td/4748 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4748?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


www.manaraa.com

 
 
 
 
 

 

 

 

TOWARD A DAMAGE-BASED FINITE ELEMENT FRACTURE THEORY AND 

APPLICATION TO DUCTILE METALS 

 
 
 
 

By 
 

Thomas Neil Williams 
 
 
 
 
 
 

A Dissertation 
Submitted to the Faculty of  
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in Computational Engineering 
in the Department of Computational Engineering 

 
 
 

Mississippi State, Mississippi 
 

August 2010 



www.manaraa.com

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by  
 

Thomas Neil Williams 
 

2010 



www.manaraa.com

 

 

 

TOWARD A DAMAGE-BASED FINITE ELEMENT FRACTURE THEORY AND 

APPLICATION TO DUCTILE METALS  

 

By 

Thomas Neil Williams 

 
Approved: 
 
 
___________________________          ___________________________ 
Philip M. Gullett    Douglas J. Bammann 
Assistant Professor of Civil and   Professor of Mechanical Engineering 
Environmental Engineering    (Committee Member) 
(Director of Dissertation) 
 
 
___________________________         ____________________________ 
Ioana Banicescu     James C. Newman, Jr. 
Professor of Computer    Professor of Aerospace Engineering 
Science and Engineering     (Committee Member) 
(Committee Member) 
 
 
___________________________         ____________________________ 
Seth F. Oppenheimer     Mark M. Rashid 
Professor of Mathematics    Adjunct Professor of Civil 
(Minor Committee Member)    and Environmental Engineering 
       (Committee Member) 
 
 
___________________________         ____________________________ 
J. Mark Janus      Sarah A. Rajala 
Professor of Aerospace Engineering   Dean of the Bagley College of  
Director of Graduate Studies in   Engineering 
Computational Engineering 



www.manaraa.com

Name: Thomas Neil Williams 

Date of Degree:  August 07, 2010 

Institution:  Mississippi State University 

Major Field:  Computational Engineering 

Major Professor: Dr. Philip M. Gullett 

Minor Field:  Mathematics 

Minor Professor:  Dr. Seth F. Oppenheimer 

Title of Study:  TOWARD A DAMAGE-BASED FINITE ELEMENT FRACTURE   
              THEORY AND APPLICATION TO DUCTILE METALS  
 
Pages in Study:  174 
 
Candidate for Degree of Doctor of Philosophy 
 

 In this work, the simulation of monotonic fracture in ductile metals was studied 

and a method of predicting damage-based fracture propagation was introduced.  

Traditional methodologies for predicting stable crack growth were investigated, and an 

error analysis was performed to show the suitability of the fracture simulation method 

chosen for this study. J2 plasticity was investigated for its applicability in predicting crack 

advance direction for mode-I and mixed-mode simulations.  A two parameter crack 

advance criterion was introduced, and crack propagation simulations were performed to 

show the suitability of the new fracture criterion that is dependent on damage. J2 

plasticity was modified in an attempt to capture the damage mechanisms occurring in 

front of the crack tip.  The end result of this research is a computational tool that is 

capable of predicting the crack propagation path based on physical and measurable 
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material parameters without knowledge of the crack trajectory a priori while also 

allowing the constitutive model for the material response to be readily changed.  

 An error analysis was also performed on the existing equations of crack surface 

displacements for symmetric cracks emanating from a circular hole in an infinite plate 

subjected to remote stress and stress applied to a segment of the crack surface.  New 

equations were developed for crack surface displacements for symmetric cracks 

emanating from the circular hole in an infinite plate subjected to a remote stress.   
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CHAPTER I 
 

INTRODUCTION 
 
 

 Ductile metals are used in various industrial applications where failure would be 

considered catastrophic. Attempts to model failure in terms of stable crack growth 

accurately have been made, and currently the efforts exhibit either mesh independence or 

a realistic material dependent fracture criteria but not both.  The purpose of this work is 

to work toward a fracture prediction tool encompassing both previously mentioned 

properties that relies on physical, measurable material parameters, which can capture 

crack trajectories in various materials. 

 Chapter II presents a review of the field of fracture mechanics. Linear elastic 

fracture mechanics as well as elastic-plastic fracture mechanics methods are briefly 

discussed. The mechanisms that cause fracture to occur at the micron-level are discussed 

along with methods to approximate them. Numerical methods that are used to represent 

fracture and the propagation of cracks are also presented.  

 Chapter III presents an error analysis for the theory used throughout this work to 

represent fracture in a simulation. It is shown that the theory is suitable for linear elastic 

and elastic-plastic material behavior.  Methods for visualization used in this research are 

also presented.   

 Chapter IV presents an error analysis performed on the crack surface 

displacements for symmetric cracks emanating from a hole in an infinite plate subjected 
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to a remote stress and loaded crack face.   The formulas accepted in the literature for the 

displacements were compared with boundary element simulation results and a numerical 

integration of a closed form expression for crack surface displacements. The error 

analysis was used to develop new, more accurate equations of crack surface 

displacements for the geometry subjected to a remote stress. 

 Chapter V investigates J2 plasticity’s capability to capture damage evolution 

preceding a crack tip in monotonic fracture.   A damage based crack advance criterion is 

introduced that incorporates damage evolution into crack propagation.  Results show the 

effect of damage and the new separation criterion on crack propagation.  Two variants of 

J2 plasticity are then introduced in an attempt to capture the damage evolution occurring 

in front of the crack tip and to tie the damage to the direction of crack advance. 

 Lastly, Chapter VI summarizes the work completed in this research and suggests 

the direction for future research. 
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CHAPTER II 

FRACTURE MECHANICS 
 
 

Introduction 

 Fracture mechanics pertains to the study of bodies with a pre-existing crack or the 

likelihood of body to develop a crack.   The field of fracture mechanics has been very 

active since the mid-1900’s. The purpose of this chapter is to review the important 

concepts in the field as they relate to monotonic fracture and the modeling of stable crack 

growth.  The motivation of the fracture mechanics field and consequently for these 

concepts was to find a single parameter that could describe not only when a crack should 

grow but also in which direction it would grow.  The stress intensity factor and the 

energy release rate were introduced as single parameters for crack growth in linear elastic 

materials.  The J-integral and CTOD/CTOA parameters were developed to provide a 

single parameter for crack growth with nonlinear elastic and plastic materials, 

respectively. A review of damage mechanics and several micromechanical models are 

also presented because much work has been performed to make damage accumulation the 

single parameter to drive crack growth.  The current methods for the numerical 

representation of fracture and crack propagation will also be reviewed in this chapter.  
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Linear Elastic Fracture Mechanics 
 
 Loading ductile materials that have a pre-existing crack produces an inelastic 

response in the region surrounding the crack tip.  There are circumstances where the 

inelastic response can be ignored and one can assume that the body responds the same 

regardless of proximity to the crack.  One such condition is when the amount of inelastic 

response is small compared to the length of the crack.  If this condition is satisfied, then 

one can safely assume that the material acts as a linear elastic body which means the 

stresses are infinite at the crack tip and stresses can be described by the strength of the 

singularity (linear elastic fracture mechanics). The fundamental assumptions of linear 

elastic fracture mechanics are: 

 1. The crack is assumed to have zero radius tip. 

 2. The material near the crack tip is assumed to behave just as the material far   

      away from the crack tip.   

 3.  The area of yielding is small compared to the dimensions of the cracked 

         body. 

 
Stress Intensity Factor 

 
 Stress intensity factors are defined with respect to the loading of the crack where 

the loading can be broken into three components as shown in Figure 2.1.  The loading 

applied to a crack can be decomposed into a linear combination of these three modes. A 

crack is subjected to Mode I loading when the loading is normal to the crack surface, i.e. 

tension.  Mode II loading is when the crack surface is subjected to a shear that causes one 



www.manaraa.com

 5

crack surface to slide over the other surface.  A crack loaded by a shear in such a way that 

faces are bending out of the page is denoted as Mode III loading.   

 

 
(a)                (b)                                (c) 

 
Figure 2.1   Three types of loading that can be applied to a crack. (a) Mode I; (b) Mode    
         II; (c) Mode III. 
 

 Closed-form solutions of the stress field have been derived for a multitude of 

cracked body problems.  Inglis (1913), Westergaard (1939), Irwin (1957), Sneddon 

(1946), and Williams (1957) are some of the earliest examples.    The solutions are 

usually given in terms of polar coordinates (r,θ) with the coordinate system’s origin 

located at the crack tip.  Using the polar coordinate system along with linear elastic 

material behavior, the stress field takes the form 

( ) ( )∑
∞

=

+=
0

)(2 
n

n
ij

n

nijij grf
r

k θαθσ                                               (2.1) 

where k is a material constant, αn are constant,  and f and g are functions of θ.  The 

displacements can be represented in a similar manner and are a function of r  which 

implies they are bounded as one approaches the crack tip.  Also, the leading term in the 

equations of stress is unique for any crack geometry and loading.  This property allows 

the use of the strength of the singularity, k, as a fracture mechanics parameter to 
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characterize crack growth under linear elastic conditions.  The stress intensity factor 

appears in the leading term of the equation above by defining it to be π2kK = . 

 The stress field of an object using linear elastic fracture mechanics can be 

decomposed into the stress contributions for each of the modes present in the loading: 

...)(
2

TOHf
r

K I
ij

II
ij += θ

π
σ  (2.2) 

...)(
2

TOHf
r

K II
ij

IIII
ij += θ

π
σ  (2.3) 

...)(
2

TOHf
r

K III
ij

IIIIII
ij += θ

π
σ  (2.4) 

where the subscript of the K’s denotes the loading mode.  The total stress is obtained by 

adding the individual contributions for each type of loading if there are multiple modes 

present and is written in equation form as 

...)(
2

)(
2

)(
2

... TOHf
r
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r
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r

KTOH III
ij

IIIII
ij

III
ij

IIII
ij

II
ij
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ij

tot
ij +++=+++= θ

π
θ

π
θ

π
σσσσ    (2.5) 

 From equation (2.1), it can be seen that as one gets close to the crack tip all the 

terms of the series approach zero except for the leading term. Thus, the leading term 

indicates the nature of the stress field as one approaches the crack tip.  

 Small scale yielding is defined to be when the size of the area that is yielding in 

the stress field is small compared to a characteristic length of the cracked body, in this 

case the length of the crack.   Small scale yielding must be occurring in order to use a 

stress intensity factor to determine the onset of fracture. If small scale yielding is 

occurring then the leading term of equation (2.2) can describe the stress of the material 

ahead of the crack.  Thus, the stress intensity factor is assumed to completely characterize 
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the loading conditions and the behavior near the crack tip.  The stress intensity factor can 

then be used to determine a failure criterion related to the material’s fracture toughness, 

denoted by KIc.  The fracture toughness parameter is not a material constant, but rather it 

has a strong dependence on the strain-rate and temperature (Dowling, 1983).  The crack 

is grown by comparing the stress intensity factor to KIc , and it should grow if the stress 

intensity factor is larger than the KIc for the material, assuming the small-scale yielding 

assumption is valid.  

 The next section presents the energy balance approach to fracture and the 

relationship that exists between it and the stress intensity factor method. 

 
Griffith and Irwin Energy Balance Methods 

 
 Energy balance concepts applied to fracture predate the stress intensity factor 

approach by thirty years, but have not had the same amount of acceptance.  Griffith 

(1920) originally formulated an energy balanced approach for the special case of brittle 

fracture. It has also been successfully applied to highly nonlinear and elastoplastic 

fracture mechanics.  Griffith used Inglis’ (1913) solution of a through crack (length of 2a) 

in an infinite plate subjected to an applied stress, σ, that results in mode-I loading to 

calculate the strain energy that could cause a crack to advance.  Assuming the material is 

in a plane stress condition, Griffith calculated the decrease in strain energy as  

E
a 22 σπ−

=Ω    (2.6) 

and that the surface energy required to form the crack (length 2a) is 

ss aW γ4=     (2.7) 
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where γs is the surface energy per unit area for the material. One of Griffith’s primary 

assumptions was that crack growth would continue provided that the rate of released 

strain energy is larger than the energy required to advance the crack. In equation form 

this becomes 

( ) 0≥+Ω sW
da
d       (2.8) 

where da is the increment in crack length.  The onset of fracture would be the minimum 

of equation (2.8), i.e. 

( ) 0=+Ω sW
da
d .     (2.9) 

The stress σf that exists at the minimum of equation (2.9) is termed the fracture or critical 

stress and is found to be 

              
a

E s
f π

γσ 2
= .    (2.10) 

 This formulation is restricted to brittle material because plasticity is another form 

of energy dissipation, and this method consequently cannot be applied to materials that 

exhibit large plastic deformation.  

 Irwin (1948) and Orowan (1955) observed that even brittle fracture events had 

significant inelastic deformation on the fracture surface. The magnitude of energy 

dissipated by the plastic deformation was several orders of magnitude larger than that of 

the surface energy used to calculate σf by Griffith.  The modified Griffith equation 

independently derived by Irwin and Orowan that incorporates the effect of plastic 

deformation is 
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( )
a

E ps
f π

γγ
σ

+
=

2
     (2.11) 

with γp representing the plastic work.   

 Irwin (1957) later coined the phrase “strain energy release rate,” denoted by G to 

represent all forms of resistance to fracture in a material. The equation for the critical 

stress with respect to Gc is 

a
EGc

f π
σ =       (2.12) 

where Gc is the critical value of G when crack advance occurs.  

 
Relation between G and K 

 
 The formulation of the Griffith energy balance above was based on the analytical 

solution of a through crack with length 2a in an infinite plate subject to a remote tensile 

stress. The stress intensity factor for this configuration is known to be  

aK πσ=       (2.13) 

while the energy relate rate G is 

E
aG πσ 2

=        (2.14) 

Thus when crack advance occurs, i.e. cσσ = , the relation between Gc and Kc becomes 

E
KG c

c

2

=      (2.15) 

 It is now shown that this relation holds for any geometry and crack configuration. 

Consider a crack of length a+ ∆a  as shown in Figure 2.2.a and the new crack profile due 

to stresses applied in Figure 2.2.b.  As long as ∆a is sufficiently small such that the stress 
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field can be accurately modeled by the leading term, i.e. the stress intensity factor, one 

can show that the relation holds between G and K. 

 

 

(a)                              (b) 
 

Figure 2.2   (a)  Original crack configuration and (b) crack closure due to stresses applied    
         to a width ∆a from the crack tip (Anderson, 2005).  
 

The amount of work required to close the crack using the stress σ is  

    ∫
∆=

=

=∆
ax

x

xdUU
0

)(    (2.16) 

where U(x) is the increment of work done at the point x and can be calculated by  

( ) dxxuxxuxFxdU yyyyy )()()(
2
12)( σ=×=  (2.17) 

which is the integration of the force-displacement curve where uy represents the 

displacement in the y-direction.  The equation of displacement for the crack, uy, is  

       
πµ

κ
22

)()1( xaaaKu I
y

−∆∆++
=    (2.18) 

where KI(•) is the stress intensity factor at a point, µ is the shear modulus, and 

                                                        

(2.19) 
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The stress needed to close the crack of length a as a function of the stress intensity factor 

at a is 

x
aKI

yy π
σ

2
)(

=     (2.20) 

Utilizing the fact that energy release rate can be written in terms of work required to close 

the crack under a fixed load, we have 

⎟
⎠
⎞

⎜
⎝
⎛
∆
∆

=
→∆ a

UG
a 0

lim    (2.21) 

 Now the relation between G and K for any type of geometry and crack 

configuration can be readily obtained by substitution and gives 

E
Kdx

x
xa

a
aaKaKG I

a
II

a

2

0
0 4

)()()1(lim =
−∆

∆
∆++

= ∫
∆

→∆ πµ
κ   (2.22) 

under a plane stress assumption. For other modes of loading one can get a similar 

relationship.  This derivation assumes that as the crack advances it will remain in the 

same plane as the original crack. While this is a reasonable assumption for mode I 

loading, it is not realistic when applying a mixed-mode loading condition. 

 The stress intensity factor and energy balance approaches both require the small 

scale yielding condition.  For materials with significant levels of plastic deformation in 

the fracture process zone (e.g. metallic alloys), it is necessary to consider the plastic 

deformation or nonlinear elastic response that occurs in the neighborhood of the crack tip. 

The next section presents several elastic-plastic methods of fracture mechanics. 
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Elastic-Plastic Fracture Mechanics 
 
 The inelastic response cannot be ignored when the small scale yielding 

assumption is violated due to a large plastic zone, and this is the case for highly ductile 

materials such as metallic alloys. The predominant methods of modeling fracture when 

the small scale yielding hypothesis is violated are presented in this section. 

 
J-Integral 

 
 Previously mentioned fracture criteria, K and G, are both based on the assumption 

that the material has a linear consitutive behavior.  Rice (1968) introduced an integral, 

later denoted the J-integral, 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
Γ

ds
x
uTwdyJ i

i  (2.23) 

 where w is the strain energy density, ui are the components of displacement, Ti are the 

traction components along the boundary Γ, that can be used for a fracture criterion for a 

nonlinear elastic material. The integral is path-independent and represents a type of 

energy release rate for a nonlinear elastic material containing a crack.  This section 

presents the derivation of the equivalence of J to the energy release rate for nonlinear 

materials, the path independence of the integral, and its application to fracture 

simulations.  The relationship between J and G, the energy release rate for elastic 

materials will also be shown.  
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Figue 2.3   A two-dimensional body with a crack that is bounded by a curve Γ. 
 
 
 To show that J is a measure of energy release rate, suppose there is a two-

dimensional body with a crack that is bounded by a curve Γ as in Figure 2.3 and that the 

stresses only depend on two coordinates in a Cartesian system.  Assuming no body forces 

exist, the potential energy can be expressed as 

∫ ∫
Γ

−=Π
A

ii

T

dsuTwdA    (2.24) 

where w is the strain energy density, A is the area of the body, ΓT is the part of the 

boundary where the tractions Ti are applied, and ui is the displacement. If one assumes 

that there is a virtual extension of the crack, then the change in potential energy in with a 

representing the area of the crack is 

∫ ∫
Γ

−=
Π

A

i
i ds

da
duTdA

da
dw

da
d   (2.25) 

Fixing the coordinate system’s origin on the crack tip, the coordinate axis moves as the 

crack advances. Thus, the differentiation with respect to a becomes 

xaxa
x

ada
d

∂
∂

−
∂
∂

=
∂
∂

∂
∂

+
∂
∂

=    (2.26) 

Differentiating the strain energy density with respect to the coordinate, x, gives 

Γ 

a

A

Ti
ΓT 
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which is only applicable in dealing with elastic materials. Applying small strain 

assumptions  
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Applying equations (2.26-2.28) and the principle of virtual work to equation (2.25) one 

obtains 
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Using the divergence theorem, the fact that dydsnx = where nx is the unit vector in the x-

direction, and reorganizing terms, yields  
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and shows that the J contour integral is equivalent to the energy release rate for elastic 

materials. 

 The path independence of the J-integral is now shown. Let Γ be a close curve as 

in Figure 2.3. Applying Green’s Theorem to the J-integral, equation (2.30), gives 
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Observe that equation (2.28) can be written as 
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Thus the integrand in equation (2.31) vanishes and proves that the J-integral is zero for 

any close curve Γ.  

 

 

Figure 2.4   A closed curve around a crack tip consisting of four segments.  
 
 
 Consider the path shown in Figure 2.4 to prove that the J-integral is path 

independent.  Because the J-integral is equal to zero for a closed curve, we know that 

04321 =+++= JJJJJ .    (2.33) 

The portions of the path along the horizontal crack surface are traction free and dy=0 

which means that the J-integral for curves Γ2 and Γ4 is 0.0.  This implies that J1=-J2. 

which allows us to conclude that any counterclockwise path around the crack will give 

the same value. Thus the path independence of J has been shown.  

 It is important to write out the assumptions made in developing the J-integral as a 

calculation of energy release rate in nonlinear elastic materials, and they are: 

 1.)  No body forces are applied. 

 2.)  The material behaves elastically. 

 3.)  Crack faces are traction free. 

Γ1 

Γ3 

Γ2 

Γ4 



www.manaraa.com

 16

 4.)  The traction applied on the boundary of the curve, Γ, is independent of the 

 crack length a. 

Provided that these hold true and in addition the elastic behavior is linear then  J=G.   

The next section presents the requirements where J can be used in similar manner to K in 

linear elasticity to define the conditions near the crack tip. 

 
HRR Theory 

 
 Hutchinson  (1968) and Rice and Rosengren (1968) independently showed that 

the J-integral characterizes the conditions near the crack tip for a nonlinear elastic 

material just as the stress intensity factor does for a linear elastic material and their work 

was denoted as HRR theory.  The HRR fields are based on small strain relationships and 

assume the material behavior follows a Ramberg-Osgood relationship which for uniaxial 

deformation can be expressed as 

n

ooo
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

σ
σα

σ
σ

ε
ε     (2.34) 

where σo is the yield stress, Eoo σε = , n is the strain hardening exponent, and α is a 

dimensionless material specific constant.  

 They were able to show that the stress and strain relationships must follow a 1/r 

behavior near the crack tip for the strength of the singularity to be characterized by J and 

to ensure path independence of the J-integral.  They also showed that if r is assumed to be 

so small that the elastic contribution to strain becomes negligible, i.e. within the plastic 

zone, then the fields take on a power-law behavior and can be represented by  
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where In is an integration constant, and ijσ~  and ijε~ are dimensionless functions dependent 

on n, θ, and the stress-state. From the equations above it is clear that J controls the 

strength of the singularity as K did for linear elastic fracture mechanics. 

 The HRR theory has some limitations.  If r is chosen to be too small then the 

HRR equations become invalid because they do not account for the blunting effect of the 

crack tip. However, r must still be chosen small enough so that the equations are 

evaluated within the plastic zone.  Thus, there are circumstances when the value J is 

capable of characterizing the conditions of the crack tip, J-dominance, and are briefly 

presented next.  

 
J-controlled fracture 

 
 To characterize a material’s behavior in a region surrounding the crack tip using 

the J-integral several conditions must be satisfied.  The J-integral can be used to describe 

the behavior assuming there is small-scale yielding, the material behavior includes 

hardening, and the loading is quasi-static and monotonic.  J cannot accurately capture the 

material response when the increment of crack advance, ∆a, is large compared to in-plane 

dimensions. The size of ∆a must be small compared to the region of J-dominance which 

is contained in the plastic zone.  J-dominance refers to the region near the crack tip where 

J completely characterizes the behavior of the material.  Even though the unloading 
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behind the crack tip and the nonproportional loading violate assumptions made for HRR 

fields, J can still describe the crack growth if the elastic unloading and nonproportional 

loading are contained in the J-dominant region as indicated in Figure 2.5.   

 

 

 
Figure 2.5   Regions of J-controlled crack growth. (Anderson, 2005) 

 
 

CTOD/CTOA 
 

 Crack tip opening displacement (CTOD) is another common method of 

determining crack growth. Crack growth is said to occur once the displacement at a point 

on the crack reaches a critical value. The method was developed independently by Wells 

(1961) and Irwin (1961).   Wells found as a specimen was loaded, the crack faces 

separated, and plastic deformation caused the crack to blunt. The magnitude of the 

blunting increased proportionally to the material’s toughness.   Thus, Wells suggested 

that the blunting or opening at the crack tip could be used as a measure of toughness or 

resistance to fracture.  

 Irwin assumed that the plasticity surrounding the crack tip caused the crack to act 

as though it was longer.  By assuming that the crack is virtually longer by some length  r  

(e.g. r represents the plastic zone radius) one can now calculate the amount of separation 

J dominant 
zone 

Nonproportional 
plastic loading 

Elastic 
unloading 

∆a 
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at the original, undeformed crack tip location.  The displacement at a point on a crack 

surface a distance r behind the virtual tip is given by  

π2
4 rK
E

u Iy ′
=      (2.37) 

where  
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which is Irwin’s plastic zone size. Thus, the separation would be  

E
Ku
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I
y ′
==
πσ

δ
242 .   (2.39) 

Restricting the material to small scale yielding, δ or CTOD can be related to G, the 

Griffith’s energy release rate by 

YS
y

Gu
πσ

δ 42 == .     (2.40) 

 There are two conventions as to where the displacement are measured as shown in 

Figure 2.6. Figure 2.6.a shows the convention used in the above derivation. The other 

method, shown in Figure 2.6.b, is to measure at the intersection of a 90° vertex with the 

crack surfaces.  If the crack tip is assumed to blunt in a semicircular shape, then the two 

conventions are the same.  An alternative crack-advance criterion, crack tip opening 

angle, is discussed next and can be determined from crack tip opening displacement 

calculations. 

 The CTOD method is often preferred because it can be determined quickly by 

inspection and has been used extensively in the prediction of fracture and crack growth 

for thin sheets of metals (Newman, Jr., et. al., 1984, and James and Newman, Jr., 2002). 
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(a)                         (b) 
 

Figure 2.6   Methods of calculating crack opening displacements. 

  
 Crack tip opening angle (CTOA) was proposed by Shih et al. (1979) and derived 

by Rice et. al (1980) using Prandtl slip-line theory as a method of determining crack 

advance based on one parameter for thin metal sheets.  One of the requirements for the 

specimen is that the crack-length-to-thickness ratio and the ligament-to-thickness ratio 

are greater than or equal to 4.0 (Newman et. al., 2003).  This guarantees low constraint 

near the crack tip.   As indicated in the standard ASTM E2472-06, the angle is measured 

1.0 mm behind the crack tip.  To calculate a more accurate  value of the angle, the angle 

is calculated at several distances- 0.5 mm, 1.0 mm, and 1.5 mm as shown in Figure 2.7 , 

and averaged to obtain a final crack-tip opening angle. CTOA can be related to the crack 

tip opening displacement measured 1.0mm behind the crack tip by 

⎟
⎠
⎞

⎜
⎝
⎛= −

2
tan2 1 CTODψ .   (2.41) 
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Figure 2.7   A typical crack path showing how the angle is measured to calculate the   
         CTOA value. (Newman et. al., 2003 ) 

 

Exclusion Region Theory 

 This section summarizes the motivation for and development of the exclusion 

region theory (ER) as given in detail in Rashid (1997a).  In linear elastic fracture 

mechanics, the stress values have a singularity as one approaches the separation front 

which is not physically realistic.  The exclusion region theory takes a small region 

surrounding the separation front and prescribes a generalized constitutive model derived 

from the local constitutive relation. By modeling the separation front in this way, the 

unbounded stress field is removed and no asymptotic analysis is applied. Removing this 

region from the local response allows the user to introduce a criterion  to determine 

fracture and results in a representation that allows us to predict when surface separation 

will occur (Rashid, 1997a; 1997b). 

 
 

0.5 mm 
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Figure 2.8   Body containing a crack with an exploded view of the tip contained in the          
         proposed new exclusion region along with the normal (n, N) and tangent  
         (m, M) vectors defined. (Rashid, 1997a) 
 

 The formulation of the generalized continuum model for the exclusion region 

from the bulk constitutive response is summarized below, and Figure 2.8 is used for 

reference. Figure 2.8 shows an example of the exclusion region, L, centered on the crack 

tip or separation front within a body B. The exclusion region’s shape is a circle for 

simplicity of implementation but can be any shape. The deformation occurring on the 

boundary of the exclusion region can be arbitrary and should suffer a discontinuity at 

some point on the boundary due to the crack opening.  Because the generalized 

constitutive model applied within the exclusion region is to be derived from the local 

constitutive model that applies to B/L, one can conclude that the material points on the 

boundary of the exclusion region, ∂L, obey the local material model. To calculate the 

tractions on ∂L, a displacement on ∂L must also be accessible. The displacement on ∂L 

can only be available if a displacement exists everywhere within the exclusion region.  

Consequently, the primary factor of the generalized continuum model is the displacement 

field.  The displacement field must contain a jump across the new free surface, match the 

arbitrary displacements along ∂L, and have a single value at the crack tip. The 
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displacement field formulation must allow the exclusion region to be in force and 

moment equilibrium as a result of the traction distribution along ∂L.   

 The prescribed displacement field in equation (2.42) is not assumed to accurately 

capture the material response near the tip, but instead is a field that satisfies the 

conditions previously mentioned.  Utilizing polar coordinates (r, θ) centered at the crack 

tip, one example used by Rashid (1997a), the form of the displacement field, u, in L is 

taken to be 
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 (2.42) 

where û is the displacement on the exclusion region’s boundary, g is the crack tip 

displacement, v controls the twisting contribution of the displacement at the tip, a is the 

exclusion region radius, m(θ) is the tangent vector, H is the Heaviside function, and 

θ describes the new free surface. The parameters g and v are free parameters and must be 

calculated so that the exclusion region is in moment and force equilibrium. Scale 

invariance cannot be guaranteed for the generalized constitutive model used in the 

exclusion region. The radius of the region controls the behavior in the region because the 

displacements in the region are tied to the displacements on the boundary. The radius is 

also directly related to the amount of crack advance, and this is why the exclusion region 

radius is an independent parameter that also has the property of a characteristic length 

scale. 
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Figure 2.9   The exclusion region with an angle of advance, ψ, and the forces acting on   
         the region.  (Rashid, 1997a) 
  

 Introducing the exclusion region allows the criterion which indicates crack 

advance to be independent of the solution of the boundary-value problem.  Crack advance 

in the exclusion region theory occurs by using a separation criterion. The separation 

criterion is the condition that determines when the material in the exclusion region has 

reached a critical state, and the separation point (crack tip) advances through the material.  

The common fracture criteria possibilities for the separation criterion such as K, G, J, and 

CTOD/CTOA, were discussed in previous sections of this chapter. A fracture criteria 

related to G is the maximum energy release theory introduced by Cotterell and Rice 

(1980) which stated that the direction of crack advance was such that the direction caused 

the strain energy release rate G to be a maximum and this maximum has to be larger than 

a prescribed critical value, Gc. A fracture criterion related to the stress field is the 

maximum circumferential stress theory (Erdogan and Sih, 1963) that suggested crack 

extension/advance would occur in the direction that yields the maximum value of the 

circumferential stress and would grow once the maximum value surpasses a prescribed 

critical value related to the Mode-I critical stress intensity factor.  Both criteria can be 

correlated to experimental mixed mode fracture results within the realm of linear elastic 
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fracture mechanics. Or, because the tractions are known on the boundary of the exclusion 

region, it could be assumed that there is a relation between the tractions and free surface 

formation.  Figure 2.9 shows the exclusion region with ψ representing the angle of 

advance, and Fn and Fs are the normal and shear forces on the boundary defined with 

respect to the angle of advance by 

∫
+
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ψθ

θ
θθ
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an admtF  (2.43) 
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where t  is the traction on the boundary, ( )ψψ sin,cosn̂ ≡ , and ( )ψψ cos,sinm̂ −≡ . One 

possible separation criterion is a force-based fracture criterion, 

[ ]21221
sn FF

a
β+=Φ    (2.45) 

with [ ]1,0∈β , and the crack advances once Φ reaches a critical value, Φc.  This particular 

fracture criterion has been shown to be equivalent to KIc (Rashid, 1997a) for isotropic 

linear elastic materials and is confirmed again later in the next chapter. 

 Parameters in the constitutive model needed for the separation function in 

equation (2.45), namely a , β, and Φc, are introduced. Within the context of a linear 

elastic response, the product caΦ  can be determined and β can be determined with 

mixed-mode tests.  As plasticity is introduced into the material response, a and Φc can be 

measured independently.  It should be noted that the exclusion region radius is not 

dependent on the amount of inelastic deformation near the crack tip, and can be thought 

of as a true material parameter.  But, if a is taken to be too large the exclusion region 

could engulf the region of plasticity, causing the model to assume the material around the 
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tip behaves elastically. Also, if β is assigned zero, then the fracture criterion defined by 

equation (2.45) reduces to the maximum circumferential stress criterion. 

 This section presented an overview of the prevalent methods used to model 

fracture in elastic-plastic materials where significant plasticity occurred. The next section 

presents an overview of the microstructural-based approaches to model fracture and the 

mechanisms that cause fracture to occur. 

 
Microstructural-based Modeling 
 
 Microstructural-based modeling is a way to link measurable material 

characteristics such as voids and second phase particles at various length scales to a 

macroscopic material response.  By linking the material properties to a material’s 

response, it is possible for a model to be used in predicting the response for different 

scenarios such as loading conditions and temperatures.  It has been seen experimentally, 

as in Figure 2.10, that defects and particles affect the onset of fracture and the path of 

crack growth.  In a virgin material, the specimen in Figure 2.10 would fracture along the 

centerline of the gauge section. Instead, the flow lines and gas pores caused from casting 

process significantly alter the crack path. One could never match simulation and 

experimental results for this case without including the microstructure effect, so it would 

be prudent to include as many of these into the material’s response (Garrison and Moody, 

1987). 
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(a)                                          (b) 
 

Figure 2.10   (a) Image of a computed tomography scan of a magnesium specimen. Dark   
           areas represent initial porosity. (b) Image showing that the crack path was  
           heavily influenced by the initial distribution of porosity (Gullett, 2005).  
 

Damage Mechanisms 

 Nucleation, growth, and coalescence of voids are commonly referred to as 

damage mechanisms.  The nucleation of voids is defined as the introduction of voids in a 

material. This is typically occurs at the particle-matrix interface, when particles in the 

material fracture, or along a grain boundary when grains separate.  The growth of voids 

occurs when a void in the material increases in volume. The coalescence of voids occurs 

when multiple voids become one.  Coalescence is considered to occur in one of two 

ways: two voids growing until they join, or when a void sheet mechanism occurs between 

the voids. 

 Void growth is the most extensively studied damage mechanism and as a result 

many equations exist to predict void growth. The void growth equations determine the 

growth by calculating the change in radii of the void.  Two of the most commonly used 

void growth equations are due to work done by McClintock (1968) and Rice and Tracey 

(1969).  The McClintock equation specifies the rate of change in the radii using the 

formula 
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where n is dependent on the strain hardening exponent assuming the material behavior is 

described by power-law hardening, R0 is the initial void radius, α is a constant, and pε is 

the plastic strain. The form of the equation assumes the voids grow spherically.  The Rice 

and Tracey equation was developed assuming the initial void is a sphere in an infinite 

body but grows into an ellipsoid as it is subjected to a remote stress.  They concluded that 

rate of increase for the average radii was 

p

eRr 0
αε=&      (2.47) 
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and R0 is the initial void radius, σH is the hydrostatic pressure, and σvm is the von Mises 

stress.   

 Both equations allow for void growth in tension but not in compression or torsion.  

Neither model incorporates void interaction which is related to coalescence. Also, both 

equations are dependent on plastic strain for any radii’ evolution to occur.  

Related to void growth equations are equations which measure a void volume fraction. 

The void volume fraction is the percentage of material in a region that consists of voids. 

Two examples are the Cocks-Ashby equation (Cocks and Ashby, 1981) and the Gurson 

model (Gurson, 1977).  

 Cocks and Ashby developed their model to calculate the growth of voids located 

on grain boundaries at a constant stress under creep conditions and extended to multiaxial 
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stress states.  They assume that the voids in the material are spherical until the material 

fractures.  Their equation for the rate of change of void volume fraction is 
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The volume fraction rate equation was related to macroscopic rate of plastic strain.  Note 

that in a state of hydrostatic tension, equation (2.49) will not give accurate results.  Cocks 

(1989) altered equation (2.49) to account for a hydrostatic loading effect on damage 

accumulation. The next section reviews a continuum damage approach developed by 

Gurson (1977) that uses a void volume fraction parameter. 

 
Gurson Model 

 
 Continuum damage mechanics have been applied to fracture mechanics and the 

most prevalent example is the Gurson model (Gurson, 1977). Other models assume that 

damage is only a function of the deviatoric plastic deformation and disregard the fact that 

damage can accumulate in the presence of hydrostatic loads. The yield criterion and flow 

rule for the Gurson model approximate the behavior of porous ductile materials and are 

derived from a rigid plastic limit analysis where a void is approximated by a cylindrical 

body containing a cylindrical void.  The effect of the voids is averaged over an element 

using a representative volume element. The model has been modified several times 

(Tvergaard, 1982; 1990) and the model’s yield surface now captures the effect of a 

periodic array of voids and void growth in a hydrostatic load (equations (2.52-2.54)).   

 The flow potential, Φ, that only incorporates void growth is represented by 
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with q1, q2, and q3 used to fit the potential for a periodic array of voids and σe , σm , σ ,  

and f  representing von Mises stress, mean stress, flow stress (yield), and current void 

fraction respectively. To add void coalescence and nucleation, Tvergaard and Needleman 

(2001) replaced f with 
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where Fuc fff  and , , *  are fitting constants. 

The rate equation for the void volume fraction is 

          nucleationgrowth fff &&& +=                                                  (2.52) 

with  

kknucleation
BAf σσ &&&
3

+=                                               (2.53) 

and  

   ( ) p
growth Dtrff  1−=&  (2.54) 

where A and B are scalars.  Equation (2.57) assumes that nucleation can be driven by 

plastic-strain as well as being stress-controlled.  Chu and Needleman (1980) suggest that 

the constant A follow a normal distribution and that B should be equal to zero to capture 

strain-controlled nucleation.  Because equation (2.54) is a compatibility condition that 

imposes the criterion that volumetric growth is proportional to  

f−1
1      (2.55) 
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and this proportionality is a result of an assumption of volumetric growth of a spherical 

void, any modification of this simple assumption requires a complete restructuring of the 

flow potential. 

 Xia and Shih (1995) showed how one could model crack growth using the Gurson 

model for damage.  They simulated a specimen that was symmetric about the initial crack 

and inserted cells in front of the crack tip. The cells had an initial damage value and 

behaved according to the Gurson-Tvergaard constitutive model while the rest of the 

specimen behavior was characterized by J2 flow theory. The cells are represented by 

elements and along the symmetry line, and the nodes of the elements (similar to a 

cohesive model) are released simulating crack growth once the critical value of damage is 

attained. 

 Another continuum model used to capture the evolution of damage and model its 

effect on the stress-state is the Bammann-Chiesa-Johnson internal state variable plasticity 

model and is presented next.  

 
Internal State Variable plasticity-damage model 

 
 The internal state variable (ISV) plasticity and damage model created by 

Bammann (1984, 1987) and Bammann and Aifantis (1989) and modified later by 

Horstemeyer and Gokhale (1999) has been used to model plastic deformation of several 

metallic alloys (Horstemeyer, 2000, 2001).  The model is based on the assumption that 

the inelastic flow is dependent on the values of stress and the internal variables 

introduced.  The internal variables are used to describe the state of the material at a 

continuum point.  There are two internal variables related to the plasticity portion of the 
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model, isotropic (scalar) and kinematic (tensor) hardening.  The internal variables 

evolution is derived from a physically based mechanism, dislocation mechanics, and is 

implemented in a hardening-minus-recovery format (Bammann and Aifantis, 1989).   The 

evolution equations for the internal state variables include temperature and strain rate 

history effects.  Void nucleation and coalescence were added to the model by 

Horstemeyer and Gokhale (1999). 

 

 

Figure 2.11   Graph showing the multiplicative decomposition of the deformation   
           gradient with and without an intermediate damaged state. 
 

 The kinematics of the ISV plasticity model are described using a multiplicative 

decomposition of the deformation gradient into its elastic, plastic, and thermal parts, 

Tpe FFF  and  , , respectively, as shown in Figure 2.11.   The total deformation gradient 

can then be represented as 

Tpe FFFF =     (2.56) 

with the additional assumption of isotropic thermal conditions; i.e.  
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where TF is a scalar value. This decomposition creates two local intermediate 

configurations between the reference and current configuration, 0B  and B . The 

intermediate configuration, B , defined by Tp FF is useful due to the additive 

decomposition of the velocity gradient and strain tensors.  The velocity gradient, l , can  

be calculated as 

.
1111111 TpeepTTpeeppeee lllFFFFFFFFFFFFFFl ++=++==
−−−−−−− &&&  (2.58) 

The symmetric part and skew-symmetric parts of the velocity gradient are denoted by 

)(lsymD =  and )(lskewW = .  

 For the current configuration, B, the symmetric and skew-symmetric parts of the 

velocity gradient are 

Tpe DDDD −−=      (2.59) 

and  

pe WWW −=      (2.60) 
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 Following the convention of a Prandtl-Reuss flow rule the plastic flow, pD , is 

assumed to occur in the direction ασ − .  The hyperbolic sine function controlling the 

magnitude of pD  was chosen to follow the theory of thermally activated dislocation 

motion and the Garafalo (1963) formulation which describes a power law breakdown.  

The internal variable α represents kinematic hardening which describes the center of the 

yield surface at the macroscopic scale.  

 φ  is the internal variable used to represent the scalar damage variable, and its 

purpose in the deviatoric flow rule is to concentrate the stress, which increases the flow 

and can cause softening.  In addition,  damage degrades the elastic moduli of the material 

as seen in the equation (2.76). The evolution equation for φ  was motivated by the Cocks-

Ashby model (Cocks-Ashby, 1980) and is given by equation (2.49).  When φ  is 

introduced into the system of equations, an additional kinematic degree of freedom 

associated with both volumetric and shape change from the presence of the voids must be 

introduced.  The resulting decomposition of the velocity gradient becomes 

TVpe DDDDD −−−=     (2.64) 
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and 
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 The functions f(T), Y(T), and V(T) incorporate the yield of the material’s 

temperature dependence with an Arrhenius-type temperature dependence.  The function 

f(T) determines when the yield of the material becomes dependent on the strain rate.  Y(T) 

is the rate independent yield.  V(T) is responsible for capturing the magnitude of the 

yield’s dependence on strain rate.  The functions are represented by 
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where C1-C6 are fitting parameters.  The ISV model’s hardening parameters and damage 

equations are physically driven and are affected by a material’s loading history, loading 

rate, and temperature and are consistent with continuum kinematics and thermodynamics.  

The internal state variables which represent the isotropic and kinematic hardening in a 

macroscopic sense,  κ and α, respectively, evolve in a hardening-minus-recovery format, 

and  their evolution equations are written as 
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 The functions rs(T) and Rs(T) are scalar functions for static recovery, rd(T) and 

Rd(T) are scalar functions for dynamic recovery, and h(T) and H(T) are hardening moduli.  

The equations of the scalar static and dynamic recovery functions are 
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The slopes of the hardening are determined using the form 

  ( ) TCCTh 109 −=   (2.74) 

 ( ) TCCTH 1615 −=   (2.75) 

 Using the multiplicative decomposition of the deformation gradient above and 

assuming an isotropic linear elastic response holds for the intermediate configuration (see 

Figure 2.11), B , and when the Cauchy stress, σ, is convected with elastic spin, We,  the 

following relationship is obtained in the current configuration 
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where λ and µ as seen in equation (2.76) are the material’s Lame constants and eD   is 

given by equations (2.59-2.66).   

 The internal state variable plasticity damage model is capable of accurately 

predicting the first occurrence of failure in complicated geometry and loading scenarios 

(Bammann et. al. 1996 and Horstemeyer, 2001) because it incorporates the material’s 

microstructure-property relationships (voids, temperature dependence, rate dependence, 

etc…).  The damage model’s success in predicting first element failure in a finite element 

simulation is why it is considered in this fracture propagation research.  

 This section presented an overview of the damage mechanisms that occur in 

ductile materials which lead to fracture initiation and propagation. It also summarized the 
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modeling efforts to incorporate microstructure-property relationships into material 

models. 

 
Numerical Implementation of Fracture 

 
 Predicting fracture initiation and propagation in an arbitrary geometry is a very 

difficult process, but the computational resources available at present make the 

investigation of crack growth a realizable goal. The predominant methods used to model 

monotonic fracture are presented in this section. 

 
The Finite Element Method 

 
 The finite element method (FEM) is currently the most prevalent tool used to 

perform fracture simulations.  FEM methodology can be broken into three parts: divide 

the domain into parts, calculate an approximate solution for each part, and accumulate the 

approximate solutions to obtain the solution to the whole problem.   

 Consider the body in Figure 2.12.a. To obtain an accurate discretization as shown 

in Figure 2.12.b into small parts or elements, the discretization needs to follow three 

rules. First, the elements must be nonempty and have a piecewise-continuous boundary.  

Secondly, the union all the elements must sum exactly to the whole body.  Thirdly all of 

the elements should have a null intersection. The elements are described by points called 

nodes that are introduced where the elements are in contact with each other and the 

boundary of the domain as seen in Figure 2.12.b.   A shape function for each node is now 

introduced as a means of approximating a solution for the whole element in terms of the 

values known at its nodes. Shape functions associated with the nodes of an element must 
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form a basis for that element.  A shape function must also be equal to one for the node it 

is defined and zero at every other node. 

 

 

(a)          (b) 
 

Figure 2.12   (a) The body that is to be analyzed.  (b) The discretization of the body into  
           elements by inserting and connecting nodes (dots). 
 
 

 
 
Figure 2.13   Mapping of a parent element to arbitrary finite element. 

 
 
 The finite element methodology is made computationally efficient by determining 

the shape functions for standard element geometries, called parent elements, including a 

various numbers of nodes.  The shape functions are automatically assured to satisfy the 

previously mentioned conditions. A remapping procedure (Figure 2.13) is introduced to 

map the element onto the parent element geometry. 
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Figure 2.14   Quarter-point element and the resulting element after collapsing nodes. 
 

 Linear elastic fracture mechanics exhibits a singularity in the stress field at the 

crack tip and polynomial basis functions cannot capture the singularity behavior. Sharp 

gradients in the stress are present as one approaches the crack tip, which requires a very 

fine mesh in the vicinity of the tip if one wants to capture this behavior.  As the element 

size is decreased, the solution for a cracked body cannot accurately represent the stress 

field using conventional continuum elements and the solution will ultimately diverge as 

the element size continually decreases (Chan et. al., 1970).   The development of quarter-

point elements by both Barsoum (1976) and Henshell and Shaw (1975) was a large step 

toward modeling linear elastic fracture near the crack tip accurately using the finite 

element method.  The quarter-point element worked by starting with an eight node 

serendipity element and collapsing nodes 4 and 8 onto node 1 as shown in Figure 2.14. 

This introduces a singularity with a square-root behavior emanating from the three 

coinciding nodes to a surrounding small neighborhood. 
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 Crack growth is dependent on K, G, or J within the realm of linear elastic fracture 

mechanics simulations.  The stress intensity factor, K, can be found by either a direct 

computation or backed out from the energy value G.   

 

 
 
Figure 2.15   Node locations with respect to crack tip for displacement correlation. 
 
 
 One of the earliest approaches to calculate K directly is the displacement 

correlation approach credited to Chan et. al. (1970).  It required the use of displacements 

at nodes along the crack face. The nodes must be close enough to the crack tip so they are 

in the area where K dominates the stress field.  Requiring a node to be in the K-

dominated region, forces the mesh to be highly refined in the area surrounding the crack 

tip.  K is found with the displacement, y2, at the node shown in Figure 2.15 on the crack 

face from the asymptotic relationship 
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where µ is the shear modulus, v is Poisson’s ratio, r is the distance between the node and 

the crack tip, under plane strain conditions.   

 An approach based on energy methods is the virtual crack extension method 

introduced by Parks (1974) and Hellen (1975).  The energy release rate G can be 
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expressed in terms of the total potential energy, assuming the absence of body forces and 

external forces are constant during crack growth,  

Ju
a
KuG T =
∂
∂

=
2
1   (2.78) 

with u being the nodal displacement, K is the stiffness matrix, and a is the crack length.  

If the other assumptions listed in the J-integral section are satisfied, then one can say that 

G=J.  The change of the stiffness matrix is calculated by using a finite difference 

approximation while perturbing the crack length a small amount.  The stress intensity 

factor can then be calculated using 

E
KG I

2α
=      (2.79) 

where  
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α  (2.80) 

 Haber and Koh (1985) used an analytical expression for the derivative of the 

stiffness matrix which was later shown to be equivalent to the domain version of the J-

integral (Li et al., 1985) by Bank-Sills and Sherman (1992).  The analytical expression 

was more accurate than the finite difference scheme, and converting the contour integral 

to a domain integral allowed for a more direct implementation into finite element codes.  

 Accommodating crack advance in conventional finite element codes requires that 

the mesh must be altered to allow for the new crack surface.  A common method to 

accommodate crack growth is based on node-release.  This method is most often utilized 

when the geometry and loading being studied are symmetric about the crack plane. The 

crack plane is chosen as the plane of symmetry which allows for simply releasing nodes 
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along the “boundary” once it is determined that the crack grows. This restricts the crack 

growth to the symmetry plane, and node-release is most often used when the crack path is 

known a priori to be along this plane. 

 Another method of adjusting the mesh once the crack tip has advanced is adaptive 

remeshing.  Once a crack is advanced, the region containing the new crack surface must 

be remeshed. H-type refinement consists of subdividing the original elements into smaller 

versions of the original element where the error is deemed too large.  These refinement 

methods are driven by reducing an error value.   Error norms are crucial for an efficient 

and accurate refinement procedure, and are covered extensively in Babuska and 

Reinbuoldt (1978), Zeinkiewicz and Zhu (1987),  Oden et al. (1989), and Bathe and Lee 

(1994).   

 Another type of adaptive remeshing that is most closely related to the arbitrary 

mesh replacement method (Rashid, 1997a) utilized in this piece of research is the s-type 

developed by Fish (1992). The s-type finite element method consists of overlaying the 

finite element mesh with a patch of finite elements in an area that is known to have large 

gradients. The large gradients could not be detected with the large element size in the 

original mesh.  The displacements in the patch and the elements the patch covers are 

summed to find the final displacements. 

 The next subsection presents an alternative to the finite element method, the 

meshless method, and its approach to fracture. 
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Meshless Methods 
 

 Meshless methods have been extensively researched in the solid mechanics 

community for the last twenty years by Belytschko et. al. (1996) and Babuska et. al. 

(2003). Meshless methods provide a means to model objects that have large local 

deformation, and this provides a distinct advantage over the FEM for problems involving 

large local deformation and changing topologies. Element distortion associated with large 

local deformation can significantly degrade approximation accuracy. Avoidance of large 

element distortions requires remeshing- a difficult and time consuming task for arbitrary 

geometries in three dimensions.  Similarly, topology changes associated with crack 

growth requires remeshing. Meshless methods alleviate this problem by discretizing in 

terms of nodes only. To accurately model crack growth in fracture applications, a 

meshless implementation must insert additional nodes in front of the crack tip as seen in 

Figure 2.16. 

 

                            

(a)                             (b) 
 

Figure 2.16   Crack propagating using meshless methods where dots represent nodes. (a) 
The initial configuration; (b) After the crack has grown. 
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 Within the context of damage based fracture prediction, there only seem to be two 

options when dealing with meshless methods. One involves a smeared damage approach 

accounting for void growth while the other is based on linear elastic fracture mechanics.  

 The first method discussed is the damage representation. Meshless simulations 

using a void growth model to represent damage have been extensively studied (Liu, 2000 

and 1999).  In this type of simulation, a crack can be present in the initial configuration 

just as in the finite element method. With the void growth model, for nodes that have 

damage, the stiffness begins to deteriorate as the damage increases.  Once the damage 

reaches a critical value, the stiffness becomes zero and the node no longer contributes to 

the resistance of the material. The final result of the simulation is a damage field 

displayed on the initial configuration.  

 The explicit representation of a crack is based on the linear elastic fracture 

mechanics’ concept of a stress intensity factor (Rao and Rahman, 2000; Hildebrand, 

2009).  As the specimen is loaded and the stresses increase at the tip, the crack extends 

some pre-defined increment. With the extension of the crack a node is introduced at the 

new crack tip.  This method allows for the crack to be explicitly lengthened and will give 

a more realistic representation of the effect of the crack on the stress field in the material, 

but the crack extension not tied to any physical property of the material or its 

microstructure.  

 Meshless methods have their drawbacks. In the meshless method technique, one 

must still evaluate area and boundary integral, which leads to a major problem. A node’s 

contribution to the stiffness matrix is dependent on being able to integrate the shape 

functions around the boundary as well as be able to integrate the derivative of the shape 
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functions over the area. The integration of the derivatives can be cumbersome because 

their order of continuity is larger than C0. Also meshless methods’ stiffness matrix is not 

sparse which is contributed to the lack of explicitly defined connectivity between nodes. 

The computational requirement to determine node connectivity, especially for irregular 

node distributions, can be on the order of nρ with ρ>>1 and can result in an unbounded 

cycle of iterations to obtain convergence (Idelsohn et al. 2002).   Because of these 

characteristics most of the meshless methods are a hybrid of meshless with a mesh 

background. The mesh background allows the user to define integration using common 

quadrature techniques which are a strength of the finite element method (Dolbow and 

Belytschko, 1998; Li and Liu, 2004; Liu , 2002).    

 The next subsection presents the first method used to predict fracture which 

incorporated some of the processes that occur in front of the crack tip.  

 
Cohesive Zone Method 

 
 A cohesive zone is a region inserted between elements and provides the 

connectivity among the elements. The behavior of the zone is defined by a stress-

displacement relationship which will control when the cohesive zone fails.  A cohesive 

zone model simulates fracture by inserting small cohesive zones ahead of the crack tip 

seen in Figure 2.17.a. The cohesive approach introduces the physics of the material-

specific failure process.  The two driving parameters for crack advance with this 

approach are: the tensile strength value and the fracture energy (Borst, 2004; Elices, 

2002).  One relationship for ductile materials, shown in Figure 2.17.b, linearly increases 

until reaching a critical pre-defined value of stress or tensile strength , f,  as shown in 
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Figure 2.17.b. Upon maintaining f for a determined time the material behavior begins to 

soften.  The fracture energy is defined as 

∫=Γ duc σ               (2.81) 

where σ is stress, u is displacement, and Γc  represents the work per unit area necessary to 

open the cohesive surface. 

 

         

(a)                        (b) 
 

Figure 2.17   (a) Cohesive zone placement with respect to the crack. (b) Stress-  
           displacement relationship for the ductile material in the cohesive zone. 
 
 
 The cohesive zone approach was created to predict elastic-plastic fracture in 

ductile metals as well as in quasi-brittle materials (Dugdale, 1960; Barenblatt, 1962). The 

concept was created as an alternative to the linear elastic fracture mechanics approach 

which causes a singularity to exist in the stress field at the crack tip. By placing the zone 

in front of the crack, the stress singularities incurred with the classical approach are 

alleviated.  Cohesive zone model are very accurate in modeling of layers of material 

sandwiched together where a crack can only grow on boundaries of layer interfaces 

(Schellekens, 1992).  Cohesive zone modeling has also successfully modeled ductile 

material experiments. The modeling success many times arises from performing the 

f 

σ

u
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experiment first and then inserting cohesive zone elements within the simulation where 

the crack should grow (Rots, 1991). In this case, the cohesive zone internal variables 

must be obtained from a real fracture experiment as explained in Sun and Jin (2006).  Xu 

and Needleman (1994) accounted for arbitrary crack propagation by inserting cohesive 

elements between all continuum elements in a simulation.  The crack could still only 

propagate along element boundaries, and an insertion of cohesive zones between all 

elements caused artificial softening to occur.  It is clear that while cohesive zones can 

predict crack growth accurately in layered materials and can verify physical results (crack 

path a priori), a drawback is the results will exhibit mesh dependence and as a result are 

not suitable for arbitrary crack growth.  The next subsection presents a brief summary of 

the extended finite element method. 

 
Extended Finite Element Method 

 The extended finite element method (XFEM) was originally conceived by 

Belytschko and Black (1999) as a means of solving problems involving cracks without 

remeshing and providing mesh independence.  The method entails adding enrichment 

functions, which are obtained from the near tip displacement fields for Modes I and II 

loading in a linear elastic isotropic material, to selected nodes near the crack tip.  The 

near tip displacement fields for mode-I loading are 
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and mode-II are 
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The enrichment functions are the functions that span equations (2.82 – 2.85)  
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and are added to the displacement formulation at nodes surrounding the crack surface and 

tip as seen in equations (2.87) and (2.88).  XFEM uses the partition of unity  

property of finite elements that the shape functions must sum to unity to introduce the 

discontinuity, i.e. a crack, into the displacement field. The new displacement field 

equations for two dimensions become 
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where the polar coordinate system (r,θ) is centered on the crack tip, ψi(x) are the finite 

element shape functions, aji and bji are the enrichment coefficients for node i, and nE(i) is 

the number of coefficients for node i. For an element containing the crack tip nE(i) is 

equal to four and zero for all the remaining elements.  A jump function is inserted to 

introduce a discontinuity into the displacements of elements containing the remainder of 

the crack.  XFEM can model a crack and its growth in two ways as shown in Figure 2.18. 

The crack can be modeled by enriching the nodes of the finite elements that contain the 
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crack, Figure 2.18.a.  The alternative is for the crack to be part of the initial geometry and 

model subsequent growth using the XFEM method, Figure 2.18.b. 

 

 

(a)                         (b) 
 

Figure 2.18   Ways to model a crack with the extended finite element method. (a) The  
           crack is modeled completely by enriching the nodes of the elements that it  
           inhabits and that lie ahead.  (b) Part of the crack is explicitly defined in the   
           geometry while the crack tip is represented by enriching the nodes near the   
           crack tip. (Belytschko and Black, 1999) 
 

 XFEM has features that are not realizable with conventional FEM.   XFEM can 

accommodate curving cracks by mapping the enriched displacement field of straight 

crack onto the curved crack.  XFEM also allows cracks to intersect incorporating a Haar 

function , H(x,y), where 
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into the displacement field of elements the crack intersected with the exception of the 

element containing the tip (Moes et al., 1999).  Daux et al. (2000) added the capability for 

cracks to intersect and branch without dependence on the discretization.  Because of these 

capabilities and the lack of remeshing, XFEM has received wide acceptance in recent 

finite elements 

enriched nodes 
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years.  Giner et al. (2009) introduced an Abaqus user element implementation of XFEM, 

and Abaqus v6.9 incorporates the XFEM for modeling discontinuities. 

 There are some weaknesses to the method.  The XFEM lacks continuity and 

accuracy near a singularity. The error near the crack tip is due to the enrichment functions 

being derived for linear elastic, isotropic material. The nature of the enrichment functions 

restricts XFEM’s applicability to small strain simulations. Because the XFEM is based on 

the FEM, sensitivities to mesh distortion still exist in the solution.  Also there is not a 

clear way to provide contact forces if the fictitious opening closes.  Thus, XFEM is a 

capable tool to use when considering small strain linear elastic, isotropic material, but in 

the presence of finite deformation and significant plasticity, the mesh dependence and 

error problems of the FEM still exist. The final method presented here is the numerical 

representation of the exclusion region theory. 

 
Arbitrary Local Mesh Replacement Method 

 
 Rashid (1998) developed the arbitrary local mesh replacement (ALMR) method 

for implementing the exclusion region theory in a finite element program.  The ALMR 

method is a finite element approach that utilizes two meshes: one that surrounds and 

remains centered on the exclusion region as the crack advances, and one for the 

remainder of the geometry.  
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(a)                                (b)                                  (c) 

   

(d)                               (e)                             (f) 

Figure 2.19   Step-by-step schematic of the arbitrary local mesh replacement theory;    
          (a)background mesh, (b) patch mesh, (c) participating background elements, 
          (d) overlaying of the two meshes, (e) the partial elements created when           
          joining the meshes, (f) and the exclusion region at the center of the patch. 
 
 
 Consider the body in Figure 2.19.a.   The ALMR method takes the body without a 

crack and discretizes it using quadrilateral finite elements. This finite element mesh will 

be denoted as the background mesh.  A crack is introduced to the body as a series of line 

segments. The crack is not required to lie on element boundaries implying that the crack 

position is independent of the background mesh.  The exclusion region is centered on the 

crack tip as seen in Figure 2.19.f and remains centered throughout the simulation as the 

crack propagates.  The second mesh of the ALMR method that surrounds and is centered 

on the exclusion region is now created, shown in Figure 2.19.b.  The second mesh, 
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denoted patch mesh, is characterized by the radius and number of wedges in the patch 

which are user-defined parameters.  Like the background mesh, the patch is composed of 

bilinear quadrilateral elements.  Once the patch mesh is created and superimposed onto 

the background mesh, the two meshes connectivity must be established.  Any background 

elements completely covered by the patch do not participate in the solution, and these are 

the elements absent in Figure 2.19.c.  Background elements still exist along the perimeter 

of the patch that participate in the solution but are partially covered as seen in Figure 

2.19.d. These pieces of elements are used to create partial elements and are shown in blue 

in Figure 2.18.e. The crack is then used to create a free surface within the finite elements. 

If the crack cuts through an element, the element is duplicated and the crack is used to 

segment and resolve the connectivity of the elements. A new patch mesh is created 

centered on the exclusion region as the crack advances through the geometry.  Crack 

propagation in traditional finite element programs requires continual adaptive remeshing 

and is one of the predominant problems due to computational cost and solution 

dependency on the mesh.  While in the ALMR method, the only required remeshing is 

the task of generating the patch and resolving the intersection of the patch with the 

background mesh each time the crack propagates.  With each crack advance, material 

properties must be remapped from the old mesh to the new mesh just as in conventional 

finite element methods. The remapping procedure used in the ALMR implementation is 

detailed in Rashid (2002). 

 Simulating a fracture problem with conventional FEM or cohesive zone methods 

can lead to a mesh dependent crack propagation path as discussed in previous sections. It 

can be seen that the nature of the ALMR method which does not include the crack tip in 
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the discretization obviates this situation, and its only requirement for crack advance is 

that the crack advance increment be at least the radius of the exclusion region. 

 There are two additional computational tasks with the ALMR method that do not 

exist in conventional FEM.  They are enforcing displacement compatibility along the 

patch-background intersection and an integration rule for the resulting partial elements.  

Nodal displacements for nodes solely in the patch or the background can be determined 

by the shape functions from the occupying mesh. The nodal displacements for the nodes 

along the boundary of the patch and background have contributions from both meshes. A 

weak compatibility is enforced along this interface so that the difference between the 

displacement calculated by the patch and that of the background along the boundary is 

zero in an averaged sense.  A typical partial element can be seen highlighted in blue in 

Figure 2.19.e.  Due to the complex and arbitrary shape of the partial elements, integration 

points are located at the vertices and midpoints of the partial element. The weights are 

chosen in an optimal manner using a least-squares fit. The compatibility enforcement 

along the patch-background boundary and the integration routine for the partial elements 

are discussed in detail in Rashid (1998).  

 In summary, advantages to using the exclusion region theory are that it provides a 

mesh independent crack path, requires minimal remeshing and remapping,  and it allows 

for the application of any separation function for crack advance.  The ALMR capabilities 

will be improved by incorporating a material model which accounts for microstructure 

effects and developing a separation function dependent on measurable material 

parameters that are known to affect crack growth seen experimentally in materials. 
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Concluding Remarks 

 This chapter provided an overview of the major concepts in fracture mechanics.  

The concepts of both linear elastic and elastic-plastic fracture mechanics were touched 

upon.  The microstructure mechanisms that lead to fracture were also reviewed along 

with efforts to relate these mechanisms to a material’s macroscopic response.  The 

predominant methods used to model fracture and predict crack propagation were briefly 

reviewed, and drawbacks for each of these methods were noted along with reasons why 

the method for this study was chosen.  Chapter III presents the computational tasks taken 

in this study and an investigation proving the appropriateness of the ALMR method for 

our research efforts. 
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CHAPTER III 
 

 COMPUTATIONAL PROCEDURES AND SUITABILITY OF METHODS 
 
 
Introduction 
 
 To simulate crack growth in this research, two computational tasks were 

undertaken. The first task was to change the method of visualizing results. The results 

were originally analyzed using a gnuplot based executable capable of producing 

monochrome plots. The visualization was changed so constitutive models with large 

numbers of state variables could be easily analyzed.  The computational platform was 

also changed so material models could be readily changed. The next task was to show the 

suitability of the method used to model stable crack growth in this research. The far-field 

stress values and crack-surface displacements were analyzed to see what affect if any the 

two additional approximations taken in the ALMR method would have on these values. 

 
Visualization 

 As computers have become more sophisticated they have allowed materials to be 

modeled in a more detailed manor. When using a material behavior that has multiple 

parameters that describe the material properties such as stress-state and damage and 

where the evolution of these variables is one of the desired outputs, it is important to have 

robust visualization capabilities.  Previous implementations of the finite element code 

package, FEFRAC, provided a visualization package FRPOST, which utilized the 
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freeware visualization package gnuplot.  This visualization package was changed to a 

commercial product, EnSight (2008), that provided a current visualization baseline to 

start from.  Adjustments consisted of tracking all necessary values for the finite element 

simulations namely nodes, element connectivity, participating elements, magnification 

factor, stress values, and state variable values, and write them in a format of an EnSight 

input file.   

 FRPOST was capable of providing monochrome contour plots for the state 

variables in the existing material models along with the displacements and stresses at the 

nodes as shown in Figure 3.1(a).  EnSight can represent field variables as color contour 

plots, and one can easily switch between variables in the visual field.  It was decided to 

switch all the visualization from gnuplot to EnSight because of the increased detail that 

can be achieved in the analysis as seen in Figure 3.1(b). This decision was made due to 

the fact that this research effort utilized a material model with twenty plus variables that 

needed to be tracked.   

 

            
 

(a)      (b) 
 

Figure 3.1   Contour plots from (a) the original post-processor FRPOST and from (b) the   
         new post-processor using EnSight. 
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 EnSight has the capability to visualize multiple objects at once.  The capability to 

temporarily remove the patch and/or the background mesh from the viewing window has 

been added.  The values within the exclusion region can now be visualized as well.  

 Finally, notice that the patch elements increase in size as they radiate outward 

from the crack tip. Because the patch remains centered on the crack tip as the crack 

grows, it is possible to lose data from the neighborhood of the crack tip since the 

elements surrounding the original exclusion region area are a fraction of the size of those 

that will eventually cover the same area.  The option has been added so state variables 

can be written to a file for visualization at the end of each time step and retained for 

subsequent time steps so that the sharp gradients will not be lost. These values are not 

being currently used, but were saved in the event future research warranted them.  

 Values visualized from a finite element program are either represented at 

integration points or nodes. The finite element program used bi-linear quadrilateral 

elements which have four integration points, and each integration point has a separate set 

of values that represent the stress and any other state variables used to describe the 

material behavior in the material model.  The geometry of a simulation is defined by 

nodes and elements and as a result any values that are to be visualized must be for either 

the nodes or the elements in EnSight.  To minimize writing and storage space, values 

were visualized on a per element basis for the new post-processor.   
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Figure 3.2   Master element and deformed element with integration points, distances, and  
         centroid marked. 
 

 The method adopted to determine the values for an element from its integration 

points is described here. Consider the element in Figure 3.2.  The first step is to calculate 

the centroid of the element and assume that this point faithfully represents the element.  

The centroid, ce, is calculated by first determining the area of the element.   The area can 

be found by using Green’s Theorem which can be stated as:  

 Assume there is a piecewise smooth simple closed curve, C, enclosing a region R.   

 If M and N are continuous functions with continuous first partial derivatives in R 

 then 
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where n is the number of nodes in the element and the n+1 node is the first node. 

The centroid or center of mass was found by 
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Green’s theorem can be used to calculate the value of the numerator which results in 

( )( )∑∫
+

=
+++ −+==

1

1
111

2

6
1

2
1 n

i
iiiiii

C
x yxyxxxdyxµ            (3.4) 

and similarly for µy. 

 The integration points’ locations were determined in the deformed element, and 

the distance between the centroid and each integration point’s location is calculated and 

denoted wi. This distance was used as a weight for that integration point’s value, vi, and 

the final value for the element was a weighted average and was calculated by 
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for every value at the integration points in the element. 

 The subroutine that called the material model update was changed so that any 

Abaqus (2009) user material update (umat) can be incorporated into our finite element 

program.  A driver subroutine was written that accommodated the difference in the 

required data formats for our program and the Abaqus umat.  The driver is capable of 

adjusting the size of storage arrays that are dependent on the material model. Once the 

umat returned with the updated material response, the driver then rearranged the values to 

the order required for the finite element program. 

 This section presented a brief overview of the computational efforts taken in this 

research. An alternate method of visualizing the finite element results was introduced.  

We also added the capability to use Abaqus user material updates in our finite element 
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program.  The next section presents a study that investigates the effect of the two 

approximations made in the ALMR method that are not made in conventional FEM. 

 
Error Analysis 
 
 Chapter II introduced a prescribed displacement field in the region of the crack tip 

and a weak form of compatibility between the patch and background mesh. In this section 

we qualitatively analyze the error incurred by using these approximations within a 

computational framework.  

 
Qualitative Remote Stress Field Error Analysis 

 
 It is prudent to investigate the effect of the displacement field prescribed in the 

exclusion region and the patch-background compatibility on the finite element results. 

One such endeavor was to determine if these approximations had any effect on the far-

field stress values, or that St. Venant’s principle holds. St. Venant’s principle (Saint-

Venant, 1855) can be written as:  

the strains that can be produced in a body by the application, to a small part of its 

surface, of a system of forces statically equivalent to zero force and zero couple 

are of negligible magnitude at distances which are large compared with the linear 

dimensions of the part.(Love, 1927)  
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(a)                                                   (b) 

 
Figure 3.3   (a) Specimen and boundary conditions for tensile loading.  (b) Specimen and  
         boundary conditions for simple shear loading. 
 

 A rectangular block of dimension b x b where b equals 100 mm with an edge 

crack was used for this exercise as seen in Figure 3.3.  There were also two types of 

loading. The first was a tensile loading that was applied by prescribing a displacement 

along the top surface shown in Figure 3.3(a).  The second was a simple shear loading 

condition shown in Figure 3.3(b).  The simulations were run until the onset of crack 

advance.   

 Two types of material behavior were chosen for this analysis. The first material 

response was linear elasticity.  Young’s modulus and Poisson’s ratio were assigned 45 

GPa and 0.35, respectively.   The second material response was isotropic hardening. 

Young’s modulus was the same as in the linear elastic behavior, but the yield stress was 

defined to be 123 MPa.  The slope of the hardening portion of the response was 1500 

MPa.  

 There must be a baseline simulation whose stress results can be used as a 

reference for comparison purposes.  The reference simulation was the rectangular block 

with a crack explicitly defined in the geometry; i.e. no exclusion region present in the 
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simulation.  Simulations including the exclusion region were run varying the radius from 

0.05 mm to 0.30 mm.  

 

 
Figure 3.4   Body with a rotated coordinate system by angle θ.  
 

 The tangential stress values far away from the crack tip were chosen along a 

circular path centered on the crack tip. The first radius of the path, 25 mm, was chosen 

such that the there were no sharp gradients along the path.  The second radius, 5 mm, was 

chosen to see if there were any effects closer to the crack tip.  The tangential stress, yyσ ′  

in Figure 3.4, can be calculated using the stress tensor 
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             (3.6) 

for the reference coordinate system and the angle θ for the new coordinate system.  

Defining the rotation matrix using the rotation in Figure 3.4, R, as 
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the stress tensor for the rotated coordinates can be found by 
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  TRRσσ =' .              (3.8) 

The tangential stress in indicial notation is then 

kjkjyy RR 22 σσ =′              (3.9) 

or 

( ) ( ) ( ) ( )[ ]θθσθσθσσ sincos2cossin 22
xyyyxxyy −+=′ .         (3.10) 

 
 Thirty-six points evenly spaced along the circular path were chosen as places to 

calculate the tangential stress.  This translated to one point for every ten degrees.  For the 

simulations with an explicit crack in the geometry, the point on the path will most likely 

not coincide with an integration point in an element.  A methodology needed to be chosen 

as a means of determining what stress value from the finite element mesh to use to 

calculate the tangential stress.  

 It is important to note that the described methodology is for specimens where the 

crack tip is located at the origin of the coordinate system.  The first step was to determine 

which element contained the point on the path.  After identifying the element containing 

the point, an averaged stress tensor for the element was calculated.  The stress tensor was 

then used to calculate the tangential stress.  Each step is described below. 

 The element corresponding to each point must be identified. The tangential stress 

values for the simulations including the exclusion region theory were easily calculated 

from the elements in the patch mesh.  The number of wedges that make up each ring of 

the patch was chosen to be the same as the number of points where the tangential stress 

was to be calculated.  Equal number of wedges and points allows the tangential stress to 
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be readily calculated from the stress values of the ring that coincides with the radius 

chosen.   

 

    
(a)      (b)             (c) 

 
Figure 3.5   Possible paths around a point for winding number calculations. 
 

 The simulations without the exclusion region theory determined the element 

corresponding to the points of interest by using a winding number algorithm introduced 

by Alciatore and Miranda (1995).  A winding number is a mathematical measure of the 

number of times a path or line winds around a point of interest and can be represented as 
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where γ is a closed rectifiable path. It is frequently used in complex analysis evaluating 

integrals using Cauchy’s Theorem and Integral Formula (Conway, 1978).  Figure 3.5 

shows several examples of how a path could surround a point. The magnitude of the 

winding number for the path about the point in the first scenario is 1 since the path wraps 

around the point once. For the second example the path goes around the point once in the 

counter-clockwise direction and once in the clockwise direction resulting in a winding 
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number of 0.0. The third example shows a point completely outside the area enclosed by 

the closed path resulting in a winding number of 0.0. 

 The winding number algorithm uses what is commonly referred to as an axis 

crossing method.  An axis crossing method for a polygon determines if an edge of a 

polygon crosses the x-axis and in what direction, clockwise and counter-clockwise. If the 

system coordinates are translated such that the point of interest becomes the origin, then 

the axis crossing method result is the winding number.  Special consideration needs to be 

taken in the event a vertex or an edge is on the x-axis of the translated coordinate system.  

In the case of the former, each edge would add 0.5 to the winding number resulting in 

increasing the winding number by one.   The winding number should not be affected by 

the latter since the edge does not cross the x-axis.  This particular algorithm does not take 

into account the point lying on the lines.  Representing a polygon or element as a series of 

vertices v1, v2, …,vp , the pseudocode for the algorithm is as follows: 

1.  Translate the coordinate system so that the point of interest is the origin and the 

coordinates of the vertices of the element reflects this translation. 

2.  Initialize the winding number to zero. 

3.  Checking each edge, vivi+1, for crossing the x-axis by working with the coordinates of 

the vertices. 

 if the edge crosses the x-axis then calculate the coordinate where the edge  crosses 

 the x-axis, r. 

  if the coordinate is positive then check the y-coordinate of vertex vi.  
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   the y-coordinate being negative indicates a counter-clockwise  

   motion and positive indicates clockwise motion: increment the  

   winding number for the particular motion 

 else if the edge lies on top of the positive x-axis then the winding number  

 should not change 

 else if the vertex vi lies on the positive x-axis then check to see if vertex vi+1 is 

 above or below the x-axis and adjust the winding number by plus or minus 

 one-half 

 else if the vertex vi+1 lies on the positive x-axis then check to see if vertex vi is 

 above or below the x-axis and adjust the winding number by plus or minus 

 one-half 

 Consider that there are N points that we are trying to associate with an element 

and that there are P elements with L vertices each.  Best case scenario is that for each 

point the first element searched is the one that actually contains the point.  Worst case is 

that the element containing the point is the last element checked every time.  It is 

improbable that the best case scenario would ever be realized so it would be fruitful to 

reduce the sample space of elements as much as possible to reduce the number of 

operations. The strategy adopted reduces the amount of elements checked for containing 

the point.  Element centroids were calculated, and a search was done to determine if the 

centroid lies in an annular region of radius (r-ε, r+ε) where ε is appropriately defined with 

respect to the radius and the overall dimensions of the specimen.  Once these elements 

are marked, the axis-crossing method is used to pair an element with the point in 

question.   
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 The comparison of the tangential stress values at a distance of 25 mm are shown 

in Figures 3.6-3.9.  The linear elastic material under tensile and simple shear loading is 

shown in Figure 3.6 and Figure 3.7. The linear isotropic hardening response under the 

two loading conditions is shown in Figure 3.8 and Figure 3.9, respectively.  The 

tangential stress values show excellent agreement between the simulations with and 

without the exclusion region.  The tangential stress values at a distance of 5 mm away 

from the crack tip behaved in the same way as the previously mentioned results with the 

exception that the stress values were higher due to being closer to the crack tip.   It is 

evident that neither the approximate displacement field nor the weak form compatability 

along the patch-background intersection affect the far field stress values.   
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Figure 3.6   Tangential stress values along a circular path of radius 25 mm centered at the 
         crack tip of tensile loading using a linear elastic material response. 
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Figure 3.7   Tangential stress values along a circular path of radius 25 mm centered at the 
         crack tip of simple shear loading using a linear elastic material response. 
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Figure 3.8   Tangential stress values along a circular path of radius 25 mm centered at the 
         crack tip of tensile loading using a linear isotropic hardening material   
         response. 
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Figure 3.9   Tangential stress values along a circular path of radius 25 mm centered at the 
         crack tip of simple shear loading using a linear isotropic hardening material  
         response. 
 
 

Displacement Field Error Analysis 
 
 It was shown that for various loading scenarios with different material behaviors 

that the exclusion region theory does not alter the stress field results.  It has been 

previously shown that a relationship exists between the force-based separation criterion 

introduced in the exclusion region theory section from Chapter II and KIc for a linear 

elastic material (Rashid, 1997).  It would be beneficial to see what effect the prescribed 

displacement field has on the displacements along the remainder of the crack surface.  

This section is aimed at determining this effect as well as again confirming the 

relationship between the K solution and the critical separation criterion value for a linear 

elastic material.   
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Figure 3.10   Infinite plate with two symmetric cracks emanating from a hole subjected to 
          a remote stress. 
 

 The specimen used in this study is an infinite plate that has symmetric cracks 

emanating from a hole subjected to a remote uniform stress as shown in Figure 3.10.  For 

two-symmetric cracks at a hole in a plate subjected to remote applied stress, the stress-

intensity factor equation (Tada et. al, 2000) was obtained by fitting results from Newman 

(1971) as  

S
h

S
h

SS
h FdSFKK   π== ∞           (3.12) 

where SK∞  is for a crack in an infinite plate without a hole and S
hF  is the boundary-

correction factor for the circular hole.  The equation for S
hF  is 

2  1 f
d
rF S

h −=            (3.13) 

where 

432
2 156.2578.1425.1358.00.1 λλλλ +−++=f          (3.14) 

with λ = r/d for 0 ≤ λ ≤ 1.     



www.manaraa.com

 71

 Exact crack-surface displacements for a crack in an infinite plate were obtained 

using Westergaard stress functions (Tada et. al, 2000).  The displacement equation was 

then modified to approximately account for the hole (Newman, 1983).  The displacement 

equation for a point x on the crack surface is 

S
h

S
h Fxd

E
Sv   )1(2 22

2

−
−

=
η .         (3.15) 

 It is not possible to simulate an infinite plate, but one can obtain a good 

approximation by increasing the dimensions with respect to the part of interest. For these 

simulations, the geometry is cut in half and the appropriate symmetry boundary 

conditions are applied to represent the infinite plate (Figure 3.11).  The dimensions of the 

plate modeled, shown in Figure 3.11, were chosen such that they were at least twenty-

five times larger than the radius of the circle.  Both the length of crack emanating from 

the hole and the radius of the circle were chosen to be 1 mm. The width of the plate, W, 

was chosen to 25 mm; large enough such that the boundary would not affect the solution. 
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Figure 3.11   The geometry modeled in the finite element simulation in FEFRAC with a  
           remote stress S, hole of radius r, and crack of length a. 
 

 This study assumes that the material behaves linear elastically. The material 

constants used were a Young’s modulus of 45 GPa and a Poisson’s ratio of 0.35 which 

are representative of a magnesium alloy. KIc was chosen to be 17.3 MPa√m or 547.07 

MPa√mm also indicative of a magnesium alloy. 

 It has been noted that  

bKI Φ≈                         (3.16) 

where b is the exclusion region radius and Φ is the force-based separation function value 

for linear elasticity (Rashid, 1997a).  The equivalence between SIF and separation 

function value, equation (3.16), indicates that the critical separation function value, Φc,  

should take the values in Table 3.1 for the different exclusion region radius. 
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Table 3.1   Critical separation values for the different radii of the exclusion region.  
 

Exclusion Region Radius Φc 
0.0125 mm 4893.2 
0.0250 mm 3460.0 
0.0500 mm 2446.6 
0.1000 mm 1780.0 

 
 
 Gathering from the stress intensity factor equation for the geometry in Figure 3.10 

   S
h

S
h

SS
h FdSFKK   π== ∞           (3.17) 

the critical applied stress, Sc, is of the form 

   
S

h

c
S
h

c Fd
K

S
  π

= ,                          (3.18) 

and the critical value of the stress intensity factor or fracture toughness, KIc, as it is more 

commonly called is  

Ic
S

hcc
S
h KFdSK =⋅=  π .          (3.19) 

The critical applied stress is defined as the stress that causes KI=KIc, which causes failure.  

Given the KIc value above, the remote stress that should cause failure can be calculated 

from equation (3.18) and is 209.6 MPa.   

 Nondimensional values of the critical applied stress were determined using 
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rSS
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== .                  (3.20) 

The final expression of equation (3.20) was used for the non-dimensional analytical 

critical applied stress. The middle expression in equation (3.20) 

 
Ic

c
c K

rSS =             (3.21) 
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was used in conjunction with the finite element solution where Sc is the remote stress 

applied that caused the crack to advance.  Nondimemsional values for both the semi-

analytical displacements and the finite element results were obtained by the expression  

aS
vE

 
′

             (3.22) 

where a is the length of the crack measured from the edge of the hole to the crack tip, v is 

the displacement of a point in the vertical direction, S is the applied remote stress, and E’ 

is 

21 η−
=′

EE             (3.23) 

where η is Poisson’s ratio.  

 The comparison of the normalized critical applied stress for various exclusion 

radii and the analytical solution (Eqn. 3.18) are shown in Figure 3.12. The figure showed 

that most of the computations were within + 2 percent and at worst under 10 percent for 

this particular geometry.  The normalized crack surface displacements from the finite 

element simulations and the displacements from the semi-analytical solution in Newman 

(1971), equation (3.15), are shown in Figure 3.13.  The displacements overall have an 

excellent agreement with the semi-analytical solution.  Several conclusions can be made 

from Figure 3.13.  The first is that all of the results coincide with each other except those 

of the 0.1 radii. Secondly, the displacement results diverge from the published 

displacement field where the crack meets the hole.  The divergence needs to be further 

investigated and the investigation is presented in the next chapter. 

 The normalized critical applied stresses (Eqn. 3.21) that caused fracture are within 

a few percent of the accepted K-solutions for the geometry.   The displacements from the 
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finite element simulations deviate from existing semi-analytical solution as one moves 

away from the crack tip. The next chapter of this dissertation addresses the deviation 

shown in the crack surface displacements for the geometry above as well as the scenario 

where part of the crack surface is loaded. The two loading conditions were chosen 

because accurate displacements for these loading situations are a necessity for fatigue 

modeling. The next chapter will in fact show that the difference between the finite 

element displacement results and the semi-analytical displacement is not an artifact of the 

finite element simulation.  The next subsection’s goal is to find an appropriate exclusion 

region radius when plasticity is introduced. 
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Figure 3.12   Comparison of the normalized critical applied stress versus normalized  
           crack length results from the analytical and finite element solutions varying  
           the radii of the exclusion region. 
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Figure 3.13   Comparison of the semi-analytical displacement equation (eqn.3.2) with the  
           normalized crack surface displacements from the finite element simulations 
           varying the radii of the exclusion region. 
 
 
 

Determination of suitable Exclusion Region radius with plasticity 

 It has been shown in the previous sections that the exclusion region theory yields 

the same results as conventional finite element solutions for linear elastic material.  

Rashid (1997a) showed and it was repeated in the previous section that there is a 

direction relationship between the exclusion region theory using a force-based separation 

criterion and the stress intensity factor approach, assuming the radius of the exclusion 

region is less that three percent of the crack length.  This section’s purpose is to 

investigate the effect of the radius on simulation results when plasticity is introduced into 

the material behavior.     

 The specimen used in this investigation is an infinite plate containing cracks 

emanating from a circular hole subjected to remote loading as shown in the last section.  



www.manaraa.com

 77

The analytical solution used in this section for crack surface displacements is determined 

in the next chapter. 

 The outline of this investigation is as follows. First, a benchmark solution/method 

must be found. The benchmark for this study will be simulating the specimen above 

using the commercial code, Abaqus.  Once it is shown that Abaqus produces the exact 

solution for the linear elastic case, it will be assumed that Abaqus continues to give 

accurate results once plasticity is introduced.  Using a plasticity model in Abaqus, results 

for stress and crack-surface displacements will be used to judge the accuracy of the 

results of the exclusion region theory, will indicate the effect the radius of the exclusion 

region has on the simulation results, and should offer guidelines as to the suggested size 

of the exclusion region with plasticity. 

 The geometry for all the simulations using the exclusion region theory, Figure 

3.11, is a half-model of the specimen in Figure 3.10.   The material constants were 

Young’s modulus of 45 GPa and a Poisson’s ratio of 0.35. For the isotropic hardening 

model, the additional constants that need to be prescribed are the yield stress which is 123 

MPa and the slope of the hardening curve which is 1500 MPa. These constants are 

representative of a magnesium alloy.  For linear elasticity, the remote stress was ramped 

to a value of 210.0 MPa, while for the isotropic hardening case the loading was ramped to 

a value of 126.0 MPa. The simulations were run assuming plane strain conditions and 

using quadrilateral elements with four integration points. 
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Figure 3.14   Quarter geometry used to simulate specimen with Abaqus where the radius  
           of the circle is r and the length of the crack is a. 
 

 The geometry for the simulations using Abaqus required the used of a quarter 

geometry shown in Figure 3.14.  The top row of elements where the load was to be 

applied was used to create a surface. A pressure equivalent to the stress in the half 

geometry was applied to that surface.  The bottom boundary in the quarter geometry is on 

rollers except for the part that acts as the crack surface. The Abaqus simulations used 

plane strain elements with four integration points per element. 

 

 
 
Figure 3.15   Cracked geometry showing the ray that was used as a path for comparison  
           of stresses from elements for the plots in Figures 3.17, 3.18, 3.26, and 3.27. 
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 The values for crack surface displacement were taken from the nodes on the crack 

surface.  The stress components were taken from the elements along a ray emanating 

from the crack tip as shown in Figure 3.15.  The analytical axial stress shown in Figure 

3.17 is calculated by using the first term in the Taylor series expansion and is 
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where 

S
h

S
h

S
I   FπdSFKK == ∞           (3.25) 

, re is the distance from the element’s centroid to the crack tip, and SK∞  is for a crack in 

an infinite plate without a hole and S
hF  is the boundary-correction factor for the circular 

hole.  The equation for S
hF  is 

2
S
h f  

d
r1F −=            (3.26) 

where 

432
2 2.156λ1.578λ1.425λ0.358λ1.0f +−++=          (3.27) 

with λ = r/d for 0 ≤ λ ≤ 1. 

 
 The linear elastic simulations served to verify first that Abaqus gives the correct 

results, and secondly that the exclusion region results were also in agreement assuming 

the conditions on the exclusion region radius proposed by Rashid (1997) were 

maintained.  Figure 3.16 shows the crack surface displacements for the linear elastic 

simulations in FEFRAC and Abaqus. The comparison shows that as the exclusion region 

radius decreased the displacements converged to the new analytical solution proposed in 
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the next chapter of this work.  The effect of the radius on displacements for radii less than 

five percent of the crack length extends about two radii beyond the boundary of the 

region. Displacement results from points about two radii away from the exclusion region 

show good agreement with the new displacement solution.   Figure 3.17 shows the axial 

stress component of the stress tensor for the ray in Figure 3.15. The axial stress 

component was chosen due to it being the largest component of the stress tensor. The 

results show that the radius of one percent of the crack length is the only one where the 

maximum stress agrees with the Abaqus results.  The maximum for the .01 radius 

simulation actually occurred behind the crack tip and this was a result of taking the 

locations on the crack surface from the deformed configuration.  The plateaus for each 

exclusion region are the result of the prescribed displacement field within the exclusion 

region.  The Abaqus and FEFRAC results also have the same general behavior as the first 

term of the Taylor series approximation.   

 The deviatoric stress component value was also investigated. The first term of the 

Taylor series expansion of the deviatoric stress is 
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and is plotted as the analytical solution.  It can be concluded from the previously two 

mentioned plots that the smallest and largest exclusion region simulations serve as the 

upper and lower bound of the results. Thus for the deviatoric component, only these two 

were shown for viewing ease in Figure 3.18 since there was little variation in the values.  

One can see that the trends are the same, but the maximum and minimum values differ. 

This is believed to be a result of the prescribed displacement in the exclusion region.   
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 To get a general feel of the agreement between FEFRAC and Abaqus, contour 

plots for all the simulations run are presented.  All values were calculated based on the 

centroid of the element.  The von Mises stress is shown in Figures 3.19-3.24.  The scale 

is the same for the plots allowing a qualitative comparison to take place.  The maximum 

value for the scale bar was chosen by selecting a value a small distance away from the 

exclusion region boundary in the largest radius simulation. This was done in an attempt 

to show the global behavior since the maximum values of the output values are going to 

occur on the boundary of the exclusion region.  The stress fields are further evidence 

verifying that Abaqus and FEFRAC simulations show excellent agreement. Also, it has 

been shown for the linear elastic case that the exclusion region theory’s implementation 

can match accepted crack surface displacements that will be shown in the next chapter. 
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Figure 3.16   Crack surface displacement comparison between Abaqus, analytical    
           solutions, and exclusion region finite element simulations. 
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Figure 3.17   Axial stress comparison between Abaqus, analytical solutions, and   
           exclusion region finite element simulations. 
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Figure 3.18   Shear stress comparison between Abaqus, analytical solutions, and   
           exclusion region finite element simulations. 
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Figure 3.19   Von Mises stress field of a linear elastic material simulation in FEFRAC  
           with ER = 0.01 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.20   Von Mises stress field of a linear elastic material simulation in FEFRAC  
           with ER = 0.025 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.21   Von Mises stress field of a linear elastic material simulation in FEFRAC  
           with ER = 0.05 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.22   Von Mises stress field of a linear elastic material simulation in FEFRAC  
           with ER = 0.10 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.23   Von Mises stress field of a linear elastic material simulation in FEFRAC  
           with ER = 0.15 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.24   Von Mises stress field of a linear elastic material simulation in Abaqus   
           where the radius and crack have length of 1.0 mm. 
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 Now that it has been shown that Abaqus gives what are believed to be accurate 

results in the linear elastic case, we assumed that when plasticity is introduced that 

Abaqus will continue to give reliable results and acts as a measure to compare our results 

from FEFRAC.  For the plasticity portion, only linear isotropic hardening was 

considered.  

 The crack surface displacements in Figure 3.25 show relatively good agreement 

with the Abaqus solution. The trend where the exclusion region solution converged to the 

Abaqus solution from the linear elastic case was present as would be expected.  The axial 

stress results in Figure 3.26 for the exclusion region of 0.01 agree with the Abaqus axial 

stress values.  The behavior of the shear stress component shown in Figure 3.27 is 

consistent with the Abaqus solution with the exception that Abaqus has more oscillations 

near the crack tip. 

 Since these results are only for one particular ray originating at the crack tip and 

that it is not realistic to plot results for multiple rays originating from the crack tip, it 

must suffice to look at the contour plots of several output variables.  The variables shown 

are the von Mises stress, the axial stress component, and the effective plastic strain. All 

plots are showing the value at the centroid of the elements.  The scale bar was set in the 

same fashion as described in the linear elastic section.  The von Mises stress plots, 

Figures 3.28-3.32, from the exclusion region simulations show that the overall trends of 

the shape agree with the contour plot from Abaqus, Figure 3.33. Similarly for the 

effective plastic strain plots, Figures 3.34-3.38, and for the axial stress plots, Figures 
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3.40-3.44, the exclusion region results have the same behavior as the Abaqus simulations 

in Figures 3.39 and 3.45, respectively.  

 From Figures 3.25-3.27, it can be concluded then that the exclusion region theory 

does give reliable results for crack-surface displacements and stress field values in the 

presence of plasticity provided that the exclusion region is less than five percent of the 

crack length.   
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Figure 3.25   Crack surface displacement comparison between Abaqus, analytical    
           solutions, and exclusion region finite element simulations for an isotropic  
           hardening material. 
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Figure 3.26   Axial stress comparison between Abaqus, analytical solutions, and       
          exclusion region finite element simulations for an isotropic hardening  
          material. 
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Figure 3.27   Shear stress comparison between Abaqus, analytical solutions, and   
           exclusion region finite element simulations for an isotropic hardening  
           material. 
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Figure 3.28   Von Mises stress field of an isotropic material simulation in FEFRAC with  
           ER = 0.01 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.29   Von Mises stress field of an isotropic material simulation in FEFRAC with  
           ER = 0.025 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.30   Von Mises stress field of an isotropic material simulation in FEFRAC with  
           ER = 0.05 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.31   Von Mises stress field of an isotropic material simulation in FEFRAC with  
           ER = 0.1 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.32   Von Mises stress field of an isotropic material simulation in FEFRAC with   
           ER = 0.15 mm where the radius and crack have length of 1.0 mm. 
 
 

 
Figure 3.33   Von Mises stress field of an isotropic material simulation in Abaqus where  
           the radius and crack have length of 1.0 mm. 
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Figure 3.34   Effective plastic strain of an isotropic material simulation in FEFRAC with  
           ER = 0.01 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.35   Effective plastic strain of an isotropic material simulation in FEFRAC with  
           ER = 0.025 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.36   Effective plastic strain of an isotropic material simulation in FEFRAC with  
           ER = 0.05 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.37   Effective plastic strain of an isotropic material simulation in FEFRAC with  
           ER = 0.1 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.38   Effective plastic strain of an isotropic material simulation in FEFRAC with  
           ER = 0.15 mm where the radius and crack have length of 1.0 mm. 
 
 

 
Figure 3.39   Effective plastic strain of an isotropic material simulation in Abaqus where  
           the radius and crack have length of 1.0 mm. 
 
 
 



www.manaraa.com

 95

 
 
Figure 3.40   Axial stress field of an isotropic material simulation in FEFRAC with ER =  
           0.01 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.41   Axial stress field of an isotropic material simulation in FEFRAC with ER =  
           0.025 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.42   Axial stress field of an isotropic material simulation in FEFRAC with ER =  
           0.05 mm where the radius and crack have length of 1.0 mm. 
 
 

 
 
Figure 3.43   Axial stress field of an isotropic material simulation in FEFRAC with ER =  
           0.1 mm where the radius and crack have length of 1.0 mm. 
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Figure 3.44   Axial stress field of an isotropic material simulation in FEFRAC with ER =  
           0.15 mm where the radius and crack have length of 1.0 mm. 
 
 

 
Figure 3.45   Axial stress field of an isotropic material simulation in Abaqus where the  
           radius and crack have length of 1.0 mm. 
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Concluding Remarks 
 
 This chapter reviewed the efforts put into improving the visualization capabilities 

necessary for more complex material models and allowing a more detailed analysis of the 

material response. This chapter has addressed the exclusion region’s appropriateness in 

modeling fracture occurring in ductile materials. An error analysis was performed on 

both isotropic linear elastic and isotropic linear hardening material models and it can be 

concluded that the approximate displacement field did not affect the far-field stress 

values or the crack-surface displacements.  The existing crack surface displacement 

equations for symmetric cracks emanating from a hole in an infinite plate were seen to 

diverge from the finite element displacement results where the crack intersected the hole. 

Further investigation and improvement of this equation are presented in the next chapter. 
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CHAPTER IV 
 

CRACK-SURFACE DISPLACEMENTS FOR CRACKS EMANATING FROM A  
 

CIRCULAR HOLE UNDER VARIOUS LOADING CONDITIONS 
 
 
Abstract 
 
 The purpose of this section is to calculate and develop equations for crack-surface 

displacements for two-symmetric cracks emanating from a circular hole in an infinite 

plate for use in strip-yield crack-closure models.  In particular, the displacements were 

determined under two loading conditions: (1) remote applied stress and (2) uniform stress 

applied to a segment of the crack surface (partially-loaded crack).  The displacements 

were calculated by an integral-equation method based on accurate stress-intensity factor 

equations for concentrated forces applied to the crack surfaces and those for remote 

applied stress or for a partially-loaded crack surface.  A boundary-element code was also 

used to calculate crack-surface displacements for some selected cases.  Comparisons 

made with crack-surface displacement equations previously developed for the same crack 

configuration and loading showed significant differences near the location where the 

crack intersected the hole surface, but the previous equations were fairly accurate near the 

crack-tip location.  Herein an improved crack-surface displacement equation was 

developed for the case of remote applied stress.  For the partially-loaded crack case, only 

numerical comparisons are made between the previous equations and numerical 

integration.  A rapid algorithm, based on the integral-equation method, was developed to 
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calculate these displacements.  Because cracks emanating from a hole are quite common 

in the aerospace industry, accurate displacement solutions are crucial for improving life-

prediction methods based on the strip-yield crack-closure models. 

 
Nomenclature 
 
a crack length from edge of hole to crack tip 
b distance from centerline to concentrated forces on crack surface 
bj distance from centerline to partially-loaded crack surface (j = 1,2) 
c distance from centerline to crack-surface displacement location 
d crack length from centerline to crack tip 
E modulus of elasticity 
E' E/(1- η2) 
G strain-energy release rate 
K stress-intensity factor 
P applied force system 
Q virtual force applied to crack surface 
r radius of circular hole  
S remote applied stress 
v crack-surface half-displacement 
V crack-surface total displacement (2v) 
x,y Cartesian coordinates 
βj distance from centerline to partially-loaded crack surface minus hole radius (bj – 
r) 
γ ratio of b/d 
∆b width of uniform stress section on partially-loaded crack 
η material constant: 0 for plane-stress and ν for plane-strain conditions 
λ ratio of r/d 
ν Poisson’s ratio 
σ uniform stress applied to partially-loaded crack surface 

 
 

Introduction 

 Strip-yield or modified Dugdale (1960) models have been extensively used to 

develop crack-growth and crack-closure models for middle-crack-tension (Dill and Saff, 

1976; Budiansky and Hutchinson, 1978; Fuhring and Seeger, 1979; Newman Jr.,  1981) 

and compact (Mall and Newman Jr., 1985) specimens.  A model has also been developed 
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for two-symmetric cracks emanating from a circular hole (Newman Jr., 1983).  Cracks 

emanating from a circular hole are an important problem in industrial applications.  This 

crack configuration has been extensively studied to determine the stress-intensity-factor 

solutions for a variety of loading conditions (Tada et. al., 2000). 

 

               
(a)       (b) 

 
Figure 4.1   Two-symmetric cracks emanating from a circular hole under (a) remote  
         applied stress and (b) uniform stress on crack-surface segment. 
 

 The Dugdale model is the superposition of two elastic problems.  These two 

elastic crack problems are shown in Figure 4.1, but only stress-intensity factors are 

required to determine the plastic-zone length, ρ, with the uniform stress, σ, acting over 

the plastic-zone region being set to the flow stress (σo) of the material.  The plastic-zone 

length is determined by matching the stress-intensity factors (K) for the two cases shown 

in Figure 4.1 using Dugdale's finite-stress condition (KS + Kσ = 0).  However, the crack-

closure models also require the crack-surface displacements.  Tada et. al. presents an 
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integral-equation method to determine crack-surface displacements for any crack 

configuration subjected to a desired loading condition using the Green's function for the 

same crack configuration subjected to concentrated forces.  Shivakumar and Forman 

(1980) and Newman (1983) have determined the Green's function for two-symmetric 

cracks emanating from a circular hole in an infinite plate, as shown in Figure 4.2. 

 

 
Figure 4.2   Two-symmetric cracks emanating from a circular hole under pair of   
         concentrated forces. 
 

 Recently, there has been an interest in validating or improving the crack-surface 

displacements equations previously developed for two-symmetric cracks emanating from 

a circular hole in an infinite plate, as shown in Figure 4.1.  Stress-intensity factors and 

crack-surface displacements are vital to the development of an accurate fatigue life 

prediction code based on strip-yield models.  Inaccurate displacements could lead to 

inadequate life predictions.  The motivation for this section is to investigate the accuracy 

of the existing displacement equations, and develop improved equations and/or rapid 
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integration schemes.  The section is organized as follows: analysis procedures, stress-

intensity factors for necessary crack configuration and loading, crack-surface 

displacement calculations and results, and concluding remarks. 

 
Analysis Procedures 
 

Analytical Crack-Surface Displacements 

 

 
 
Figure 4.3   Crack in arbitrary-shaped plate subjected to an applied force system, P, and  
         virtual forces, Q, acting on crack surfaces (Tada et. al., 2000).  
 

 The method of calculating crack-surface displacements analytically is discussed 

in this section.  A brief review follows Appendix B in Tada et. al. (2000).  Given the 

crack configuration in Figure 4.3 for illustrative purposes, the crack-surface 
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displacements are calculated.  The crack configuration is only Mode I to further simplify 

the calculation.  The strain-energy release rate, G, is expressed as 

      
Constant Forces

T

A
UG
∂
∂

=             (4.1) 

with UT representing the total strain energy and ∂A, the change in crack area.  The 

relationship between G and stress-intensity factor is   

      IGG = , 2
II KGE =′  where IQIPI KKK +=                     (4.2) 

and E′ is the elastic constant dependant on either plane-stress or plane-strain conditions.  

KIP is the stress-intensity factor for the desired loading, while KIQ represents the stress-

intensity factor for the virtual forces, Q, applied at the point where a displacement is 

desired.  Combining these equations with Castigliano’s theorem, simplifying and letting 

the force Q go to zero yields 

    ∫ ∂

∂
′

+=
d

0

IQ
IPCrack No QQ dA

Q
K

K
E
2VV .                                (4.3) 

The displacements are trivial when there is no crack, i.e. zero, and  

[ ]c0,afor     0
Q

K IQ ∈=
∂

∂
                                  (4.4) 

that results in the displacements being 

   ∫ ∂
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IQ
IPQ dA

Q
K

K
E
2V .                                  (4.5) 
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Numerical Integration 

 The numerical integration schemes that were applied are explained briefly in this 

section.  Because the integrands in these crack problems are very complicated, various 

numerical integration schemes were used to evaluate the integrals since they could not be 

evaluated analytically.  The goal is to find the best coefficients αi and placement of xi 

such that  

∫ ∑
=

≈
b

a

N

0i
ii )f(xαf(x)dx              (4.6) 

is as close as possible.  There are many types of numerical integration methods available, 

but some lent themselves to being more applicable for the problems of interest.  The 

interval integrated over is relatively large so none of the standard numerical integration 

methods would suffice.  Thus, what is commonly called a composite numerical 

integration scheme was used.  A composite scheme breaks the interval into subintervals 

and applies the numerical integration scheme to each individually.  The results are then 

summed to find the final answer. 

 The numerical integration schemes work very well for smooth, bounded 

functions.  But an integrand that exhibits a singularity causes obvious problems.  While 

there are sure to exist more ways to deal with the singularity, the two most prevalent are 

discussed.  The first and by far the simplest is to move a small distance, ε, away from the 

singularity point and use the function value there for the value at the singularity.  The 

other method is to remove the singularity. One way to remove the singularity is by 

representing part of the integrand as a Taylor series expanded about the singularity point 

(Burden and Faires, 1997).  The Taylor series method causes the integral to be 
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represented as a sum of two integrals, effectively eliminates the singularity, and provides 

fast convergence.  The drawback is that inherent in the Taylor series calculation one must 

be capable of evaluating the derivative(s) of the integrand.  Since the integrand for the 

displacements is very complex, this was not a viable method. 

 Nine methods of numerical integration were applied in this study.  A large 

number was chosen to ensure that the converged solution was in fact a correct solution.  

Composite closed Newton-Cotes formulas used included trapezoidal, Simpson’s rule, and 

Simpson’s three-eighth’s rule.  A composite open Newton-Cotes formula, the mid-point 

rule, was also implemented. 

 The final method and the one relied on most heavily is a fourth degree Gauss-

Legendre (G-L) based quadrature.  The degree determines the number of points used to 

approximate the integral and the accuracy of the approximation.  G-L quadrature chooses 

the points where it evaluates the function in an optimal manner.  The points are 

determined by finding the roots of Legendre polynomials.  The weights given to each 

evaluation are determined by  

         ∫∏
−

≠
= −

−
=

1

1

n

ij
1j ji

j
i dx

xx
xx

c             (4.7) 

where n is the degree of the Legendre polynomial and xi are the roots of the polynomial.  

This method is often chosen because of the property: for any polynomial, f(x), of degree 

less than 2n 

∫ ∑
− =

=
1

1

n

1i
ii )f(xcf(x)dx .             (4.8) 
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The weights and roots for the fourth order G-L quadrature approximations are given in 

Table 4.1.  This method has proven to be the most accurate one implemented. 

 
Table 4.1   Roots and weights for the Fourth order Gauss-Legendre quadrature method. 
 

N Root Weight 
4 .8611363116 .3478548451 
 .3399810436 .6521451549 
 -.3399810436 .6521451549 
 -.8611363116 .3478548451 

 
 

Convergence Test 

 Convergence when the exact solution is known is trivial.  Since there is not an 

exact solution for most of the cases studied in this section, convergence is decided as 

follows.  Assume the solution at the point xi on the crack is needed.  Denote the 

approximation of the value at xi with k subdivisions as ki )f(x .  The number of 

subdivisions is increased and the value is approximated again until   

6
ki1ki 101)f(x)f(x −

+ ×<− .               (4.9) 

 Convergence was determined independently for each method at each point.  A 

number of subdivisions found to provide convergence for one method at a point are not 

assumed to provide convergence for the other integration schemes at that point.  Nor is 

the number of subdivisions assumed to provide convergence at the next point even if it 

assured convergence with the same method at the previous point. 
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Stress-Intensity Factors 
 

 
Remote Applied Stress 

 
 For two-symmetric cracks at a hole in a plate subjected to remote applied stress, 

Figure 4.1(a), the stress-intensity factor equation (Newman, 1983) was obtained by fitting 

results from Newman (1971) as 

S
h

S
h

SS
h F  πdSFKK == ∞           (4.10) 

where SK∞  is for a crack in an infinite plate without a hole and S
hF  is the boundary-

correction factor for the circular hole.  The equation for S
hF  is 

 2
S
h f  

d
r1F −=                       (4.11) 

where 

 432
2 2.156λ1.578λ1.425λ0.358λ1.0f +−++=                   (4.12) 

with λ = r/d for 0 ≤ λ ≤ 1. 

 
Concentrated Force 

 
 Using a boundary-collocation analysis performed by Newman, the stress-intensity 

factors for two cracks emanating from a circular hole subjected to a symmetric pair of 

concentrated forces in an infinite plate, as shown in Figure 4.2, were obtained.  An 

equation was then developed to fit these results (Newman, 1983) and is 

( )
 F

bdπd
2PdFKK P

h22

p
h

pp
h

−
== ∞                     (4.13) 
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where pK∞  represents the stress-intensity factor for a crack in an infinite place without a 

hole and p
hF is the boundary correction factor for the circular hole.  The equation for p

hF is  

  
2

21
p
h λ1

γ1A
λ1
γ1A1F ⎟

⎠
⎞

⎜
⎝
⎛
−
−

+⎟
⎠
⎞

⎜
⎝
⎛
−
−

+=                     (4.14) 

   42
1 0.558λ0.02λA +−=                      (4.15) 

  42
2 0.046λ0.221λA +=                      (4.16) 

where γ = b/d, λ = r/d for λ ≤ γ ≤ 1 and 0 ≤ λ < 1.  Shivakumar and Forman (1980) also 

developed a Green's function for the same crack configuration using double-series 

polynomials with about 30 terms.  Comparisons made between the two Green functions 

indicated that they were within about 1% for crack-length-to-hole-radius (a/r) ratios 

greater than 0.001 (nearly an edge crack) and within 0.1% for a/r > 0.2.  For both loading 

conditions studied in this section, 
Q

K IQ

∂

∂
 in equation (4.5) is 

( )
 F

bdπd
2d

Q
K

Q
K P

h22

hIQ

−
=

∂
∂

=
∂

∂
.                    (4.17) 

 
 

Partially-Loaded Crack Surface 
 

 The stress-intensity-factor equation for two-symmetric cracks at a hole subjected 

to uniform stress on a segment of the crack surface, Figure 4.1(b), was derived using 

equation (4.13) as a Green’s function while integrating from b1 to b2.  The equation for 

the stress-intensity factor (Newman, 1983) is 
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Rewriting σ
hK so it is in a form similar to the K solutions in the previous problem, i.e. the 

solution for a partially-loaded crack in an infinite body times a correction factor that 

accounts for the effect of the hole,  

     σ
h

1121-
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Crack-Surface Displacements 

 The crack-surface displacement results were normalized to provide useful data to 

the research community.  The method of normalization was to take the crack-surface 

half-displacement (v) and multiply by E'/(Sa) or E'/(σa).  Verification and validation of 

the numerical implementation was done by studying the limiting cases as the crack-

length-to-hole radius (a/r) approached zero (edge crack) and as the hole radius 

approached zero, i.e. a single crack in an infinite plate.  For these limiting cases, accurate 

or exact solutions exist (Tada et. al, 2000). 
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Figure 4.4   Models used in FADD2D boundary-element analyses with and without a  
         crack for cracks emanating from a circular hole under (a) remote applied  
         stress and (b) uniform stress on crack surface. 
 
 
 As a further verification, the FADD2D (Chang and Mear, 1996), boundary-

element code, was used to calculate some of the crack-surface displacements to compare 

with the integral-equation method.  Using FADD2D, two-symmetric cracks from a hole 

in an infinite plate under remote applied stress were analyzed to obtain the displacements 

at the crack-hole intersection location.  A typical FADD2D model is shown in Figure 

4.4(a).  The solid symbols indicate major boundary nodes, while the open symbols show 

the mid-side (minor) nodes.  Convergence studies were made to determine the 

appropriate number of boundary elements to obtain accurate stress-intensity factors and 

crack-surface displacements.  The current FADD2D code does not calculate crack-

surface displacements, but only gives boundary displacements, such as along the circular 

hole.  But the code was also used to simulate a crack as a boundary with a circular hole in 

a very large plate to calculate crack-surface displacements for remote applied stress and 
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for partially-loaded crack cases.  A typical model for the partially-loaded crack from a 

hole in a very large plate is shown in Figure 4.4(b).  Note that in the actual models used, 

the width (w) and height (h) were 50 times the hole radius to eliminate any influence of 

the external boundary.  Using this approach, however, the displacements near the crack 

tip are not as accurate, as expected. 

 
Remote Applied Stress 

 
 The first case investigated was that of two-symmetric cracks emanating from a 

circular hole in an infinite plate subjected to a remote applied stress, as shown in Figure 

4.1(a).  Exact crack-surface displacements for a crack in an infinite plate were obtained 

using Westergaard stress functions (Tada et. al., 2000).  The displacement equation was 

then modified to approximately account for the hole (Newman, 1983).  The current 

equation to calculate displacement at location x is 

S
h

22
2

S
h F  xd

E
)Sη2(1v −

−
=                      (4.22) 

where S
hF  is defined by equation (4.11).  This form was selected so that the crack-surface 

displacements near the crack tip would be as accurate as the stress-intensity factor 

solution. 



www.manaraa.com

 113

 
 
Figure 4.5   Normalized displacements for cracks emanating from a hole in an infinite  
         plate subjected to remote applied stress for various a/r ratios for various  
         methods and previous equation. 
 

 Using the methods described in the analytical displacements and numerical 

integration sections, the crack-surface displacements were calculated.  These results are 

shown as solid curves in Figure 4.5.  The normalized displacement is plotted against the 

normalized location along the crack surface, (x – r)/a.  FADD2D results are also shown at 

x = r (edge of hole, square symbols) and along the crack surface (dotted curve) for a/r 

values of 1, 2 and 4.  The limiting cases for an edge crack (a/r = 0) and for a single crack 

in an infinite plate (r = 0) are also shown for comparison.  The integral-equation and 

FADD2D results agreed very well (within 1% away from the crack tip) for all cases 

considered.  In addition, the numerical results were also compared with the existing 

displacement equation (eqn. 4.22).  For a/r > 0.25, the existing equation underestimated 

the displacements, while for a/r < 0.25, the equation overestimated the displacements.  
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For all cases, the largest error occurred at the intersection of the hole and crack surface.  

The maximum error was about 10% for an a/r ratio of 1. 

 A new equation was then developed to fit the solutions from numerical 

integration.  The new equation to calculate crack-surface displacement at location x is 

HF
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These equations agree within 1.2% of the numerical integral equation results and match 

the limiting cases very well, as shown in Figure 4.6. 
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Figure 4.6   Normalized displacements for cracks emanating from a hole in an infinite  
         plate subjected to remote applied stress for various a/r ratios for various  
         methods and present equation. 
 
 

Partially-Loaded Crack Surface 
 
 The second case studied was the partially-loaded crack emanating from a hole, as 

shown in Figure 4.1(b).  The current approximate crack-surface displacement solution at 

location x is 

    σ
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When the hole radius is zero, the configuration reduces to a partially-loaded crack in an 

infinite body, which has an exact solution (Tada et. al., 2000).  Equation (4.30) converges 

to the exact solution as the hole radius tends to zero.  The special case of r = 0 was also 
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used to determine which numerical integration scheme would give the most accurate 

solution for the least amount of work.  As expected, the Gauss-Legendre quadrature was 

the best performing scheme. 

 The goal is to numerically integrate equation (4.5) with the correct substitutions, 

( )
( )∫
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−
=

d

x

P
h22
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P daF
xa
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πΕ
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and compare the displacements with the current formula.  Note that P
hF  is a function of γ 

= b/d, λ = r/d for λ ≤ γ ≤ 1 and 0 ≤ λ < 1.  The integral in equation (4.32) has to be broken 

into two integrals to evaluate numerically: (1) region of applied stress and (2) region 

beyond the stress to the crack tip.  Thus, the displacement was calculated as follows.  The 

displacement of a point x such that x ≤ b1 is calculated by 
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For a point within the applied stress region, i.e. [ ]21 b,bx∈  , displacement is calculated 

by 
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Finally, for a point beyond the applied stress, x ≥ b2 , the displacement equation becomes 
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With the three equations for displacement along the whole length of the crack developed, 

simulations were conducted for various ratios of crack-length-to-hole-radius (a/r) ratios.  
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(a) a/r = 4 

 
 

 
(b) a/r = 1 

 
Figure 4.7   Normalized displacements for cracks emanating from a hole in an infinite  
         plate subjected to uniform stress on various crack-surface segment locations  
         for various a/r ratios. 
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(c) a/r = 0.25 

 
 

 
(d) a/r = 0.05 

 
Figure 4.7   (continued) 
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(e) a/r = 0.005 

 
Figure 4.7   (continued) 
 
 

 
 
Figure 4.8   Normalized displacements for cracks emanating from a hole in an infinite  
         plate subjected to uniform stress on various width crack-surface segments  
         with β/a = 0.5 and a/r = 1. 
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Figure 4.9   Normalized displacements for cracks emanating from a hole in an infinite  
         plate subjected to uniform stress on various width crack-surface segments  
         with β2/a = 1. 
 
 
 Crack configurations were analyzed for a/r ratios of 8, 4, 2, 1, 0.5, 0.25, 0.125, 

0.05 and 0.005 with loading centered at 0.05a, 0.25a, 0.5a and 0.75a with a uniform stress 

segment of width 0.1a.  Some additional analyses were conducted by varying the width 

(b2 – b1) of the uniform stress segment for a fixed a/r ratio, and by setting (b2 – r)/a = β2/a 

= 1 and varying the (b1 – r)/a (or β1/a) ratios, like the loading used in the Dugdale model 

(1960).  Some typical results are shown in Figures 4.7-4.9, which shows comparisons 

among the integral-equation method, FADD2D (no crack) results, and the Newman 

(1983) equations.  These results show that the existing equations for crack-surface 
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displacements are severely lacking in some cases.  As the a/r ratio becomes large, the 

existing equations fit the results reasonably well provided the loading is not near the hole.  

Once the a/r ratio is less than 2, the existing equations falter near the crack-hole 

intersection location.  As the crack configuration approaches an edge crack, i.e. a/r  0, 

the errors begin to increase rapidly, as shown in Figure 4.7(c)-4.7(e).  Regardless of the 

a/r ratio, the displacement equations provide good results for location between the 

loading section and the crack tip.  Efforts were made to develop a new equation for the 

partially-loaded crack without success.  Thus, a rapid algorithm, based on the integral-

equation method, was developed to calculate the crack-surface displacements for the 

partially-loaded crack. 

 Further studies are needed to assess how these errors in the crack-surface 

displacement equations will influence crack-opening load calculations in the strip-yield 

crack-closure model (Newman Jr., 1981; Mall and Newman Jr., 1985; Newman Jr., 

1983).  During crack-growth and crack-closure simulations for cracks emanating from a 

hole, crack-surface contact stresses near the crack tip are high (close to the yield stress of 

the material), where the existing equations were shown to be the most accurate.  The 

magnitude of the contact stresses decays rapidly away from the crack-tip region.  At high 

load ratios (R = minimum to maximum load), the crack surfaces do not contact near the 

hole-crack intersection region.  Thus, the inaccurate crack-surface displacement 

equations are not used and would not have any influence on the calculated crack-opening 

loads.  However, under compressive loading, the crack surfaces near the hole-crack 

intersection region would contact, but the contact stresses would be lower than those near 

the crack tip, so their influence on calculated crack-opening loads would be much lower.  
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But further studies are required to assess the influence of these findings on fatigue- and 

crack-growth life predictions made with the strip-yield models. 

 
Concluding Remarks 
 
 Crack-surface displacements for two types of loading (remote applied stress or 

partially-loaded crack) on two-symmetric cracks emanating from a circular hole in an 

infinite plate were calculated from an integral-equation method.  The displacements were 

calculated over a wide range in crack-length-to-hole-radius (a/r) ratios from 0.005 to 8.  

In addition, the limiting cases of an edge crack (a/r = 0) and a single crack in an infinite 

plate (r = 0) were also calculated.  These results were compared with some previously 

developed equations for the same crack configuration and loading from the literature.  

The existing equations were found to be accurate for crack-length-to-hole-radius (a/r) 

ratios greater than 2, but significant errors occurred for a/r ratios less than 2.  Regardless 

of the a/r ratio, the displacement equations provide good results near the crack tip. 

 For the remote applied stress case, the errors became larger as the displacement 

location approached the hole-crack intersection location.  The maximum error was about 

10% and occurred at an a/r ratio of 1.  A new crack-surface displacement equation was 

developed and agreed within 1.2% of the numerical integration results over a wide range 

in a/r ratios from an edge crack (a/r = 0) to a single crack in an infinite plate (r = 0). 

 For the partially-loaded crack, the previous crack-surface displacement equations 

were found to be adequate for large cracks and for all points between the loaded section 

and the crack tip.  But between the loaded section and the hole, the existing displacement 

equations exhibited large errors.  As the a/r ratio tended to zero, the existing displacement 
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equation was no longer accurate, except near the crack-tip location.  Thus, a rapid 

algorithm, based on the integral-equation method, was developed to calculate these 

displacements. 

 Because cracks emanating from a hole are quite common in the aerospace 

industry, accurate displacement solutions are crucial for improving life-prediction 

methods based on the strip-yield crack-closure models.  But further studies are required 

to assess the influence of these findings on fatigue- and crack-growth life predictions 

made with strip-yield models. 
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CHAPTER V 

 
DAMAGE BASED CRACK GROWTH 

 
 
Introduction 
 
 As seen in the literature review of this dissertation, there are many well known 

methods that are used to predict fracture. Very few, however, incorporate physical 

measurable material parameters and introduce the physics/material properties in the 

failure prediction method. The purpose of this chapter is to review the methods which tie 

damage evolution to crack growth, point out their drawbacks, to show that while the 

studies mentioned work well for bulk materials with idealized defects, they can not 

adequately capture the physical events in a material containing defects occurring in front 

of a crack, and to introduce two alternative methods. 

 The first type of these methods is the cohesive zone model (Dugdale, 1960). The 

cohesive zone’s limitation is the crack path must be known a priori. The cohesive zone 

approach exhibits mesh dependence because the cohesive zone interface elements are 

placed between conventional finite elements. Inserting interface elements along every 

boundary between finite elements is the closest one can come to achieving mesh 

independence, but this can cause the material to be artificially compliant and still restricts 

growth along element boundaries. 

 The CTOD and CTOA methods (Wells, 1961; Irwin, 1961) are considered 

physically motivated because they are measurable parameters. They can be used in 
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determining when a crack will advance in a simulation, but it is not clear how the 

direction of advance is determined from these methods. They have been proven to be 

constants provided the crack-length-to-thickness ratio and the uncracked-ligament-to-

thickness ratio is greater than or equal to 4 (Newman et. al., 2003) and successfully used 

in the aerospace industry.   

 The introduction and development of damage mechanics is attributed to 

Kachanov (1958) and Rabotnov (1969). Chaboche (1988a; 1988b) suggests that one 

would expect a direct relationship between damage evolution in a material and crack 

growth as well as crack initiation.  A direct link between damage evolution and crack 

growth alleviates the need for the introduction of a separation criterion. Damage 

evolution was proved to be an accurate predictor of crack initiation (Horstemeyer, 2001).  

Damage mechanics for ductile metals is broken down into the following damage 

mechanisms:  void growth, nucleation, and coalescence. These mechanism roles in crack 

propagation are shown in Figure 5.1. Extensive studies have been done to determine 

relationships between microscopic voids and the material’s bulk response (McClintock, 

1968; Rice and Tracey, 1969).  Efforts were also put into determining a material’s 

response when the material had an effective void volume fraction (Davidson et. al., 1977; 

Cocks-Ashby, 1981; Gurson, 1977).  These two models vary in that the Cocks-Ashby is 

driven by plastic strain and the Gurson model is affected by the hydrostatic stress.   
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a     b 

 

 
c 
 

Figure 5.1   Crack growth in ductile metals. (a) Original state, (b) Voids nucleating from  
         particles in front of the crack tip, and (c) voids growing and coalescing into  
         the crack tip (Anderson ,2005). 
 
 
 Xia and Shih (1995) used a combination of J2 plasticity with the Gurson model to 

predict a fracture path based on the void volume fraction parameter.    Xia and Shih used 

the term “computational cells” to describe the insertion of the elements in front of the 

crack tip.  They take advantage of the symmetry of a cracked body and use node release 

methodology along the symmetry line once it is determined the crack should grow. They 

state that no limit is placed on crack advance except that the crack must grow along the 

symmetry line. The width of the computational cells is the increment of crack advance, 

and is related to a measurable material parameter.  The computational cells’ material 

response is a Gurson model while the remainder of the elements in the simulation follows 

a J2 behavior. They note that the Gurson model is necessary because the dilatant plasticity 

is capable of describing the void growth. The addition of computational cells implies the 

crack path must still be known a priori. 
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 The extended finite element method (X-FEM) (Belytschko and Black, 1999) has 

also been used for stable crack growth during fracture.   X-FEM’s use is confined to the 

realm of small-strains.  The enrichment functions, as described in the literature review, 

are based on linear elastic fracture mechanics and cannot capture the response when 

significant plasticity occurs. It is not immediately clear how one would incorporate 

material properties into the extended finite element method.   

 J2 plasticity based models (Rice and Tracey, 1969; Bammann et. al., 1996) have 

been widely used to predict the onset of failure by progression of the damage 

mechanisms previously mentioned.  A parameter has yet to be found in these J2 models 

that determines crack advance and direction. This chapter shows that plastic strain 

variable is not an optimal parameter and attempts to find the optimal parameter for 

damage accumulation in the presence of a crack and crack propagation  

 
J2 Plasticity 
 
 There are many J2 plasticity based models that exist, but because they are all 

driven by the same thing, plastic strain, it is only necessary to consider one here.  The 

internal state variable plasticity model developed by Bammann, Chiesa, and Johnson 

(Bammann, 1989; Bammann, et. al, 1996) and introduced in the literature review is a J2 

based model which incorporates a void volume fraction parameter. The parameter’s 

evolution is the Cocks-Ashby equation (1981) for spherical voids in a material. The BCJ 

model has been implemented into an Abaqus user material (UMAT) subroutine which 

was used to verify the BCJ was implemented correctly into our code, FEFRAC.  One 

element simulations shown in Figure 5.2 were run in both FEFRAC and Abaqus. The 
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stress-strain results for both simulations are shown in Figure 5.3. The stress-strain results 

show excellent agreement prior to bifurcation. After bifurcation the results are non-

unique and dependent on the solver used in the program. The damage evolution for both 

simulations is shown in Figure 5.4 and again shows good agreement prior to bifurcation. 

Thus, it has been verified that the BCJ constitutive model is correctly implemented into 

our finite element fracture program. 

 

 
 

Figure 5.2   Loading and boundary conditions applied for the one element simulation. 
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Figure 5.3   Von Mises stress versus effective plastic strain for a one element simulation. 
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Figure 5.4   Damage versus effective plastic strain are shown for a one element        
         simulation. 
 
 
 The BCJ constitutive model is used to represent the material response for the 

specimen and loading shown in Figure 5.5.  The specimen is a standard compact 

specimen with a preexisting crack as shown along the centerline. The crack was advanced 

based on the calculated CTOA value.  The results shown are using the exclusion region 

theory because the angular dependence of variables is easier to capture, and Chapter III 

showed that the results are in excellent agreement with other finite element programs.  

 The direction of crack advance was determined by the direction which maximizes 

the normal opening force along the exclusion region boundary.  The initial damage field 

was chosen to be uniform.  The damage field around the exclusion region midway 

through the simulation and at the end of the simulation is shown in Figure 5.6a and 5.6b, 

respectively.  The damage values for the elements around the exclusion region boundary 

are plotted for each time step in Figure 5.8 using Figure 5.7 as a reference for direction.  
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 The crack trajectory is known to grow straight ahead or π radians for the 

symmetric geometry and loading conditions.  Figure 5.8 shows the maximum damage 

values are behind the crack tip and the damage is changing very little at the correct angle. 

Figure 5.6b shows the behavior of the damage field after the crack has advanced several 

times.   The plastic strain field is known to be a double lobed shape centered on the crack 

tip. What has been seen and shown in Chapter III is that the maximum von Mises stress 

occurs on the back of the lobes, and this behavior causes the plastic strain’s maximum to 

occur behind the crack tip. 

 

 
 

Figure 5.5   A schematic of the test case where the evolution of damage is studied.   
 
 
 
 
 
 

F 

F 
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a       b 

 
Figure 5.6   With a damage scale from .009 to .1, here is (a) damage evolution midway  
         through the simulation and (b) the final mapping of damage. 
 
 

 
 
Figure 5.7   The damage and angle were obtained from the boundary of the exclusion  
         region by revolving counter-clockwise beginning at the crack. 
 
 
 

 

Figure 5.8   Damage as function of angle around the exclusion region at times t1-t10. 

θ
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 Consider the tension specimen with an edge crack where there is strictly mode I 

loading present and mixed-mode tension specimen shown in Figure 5.9.  The material 

behavior was described by a linear isotropic hardening flow rule using J2 plasticity with 

no damage present. Because it has been shown the plastic strain accumulates behind the 

crack tip and consequently the damage accumulates in the same place, the stress and 

strain fields were investigated to see if a component existed that predicted the advance 

direction.  Simulations were performed for a stationary crack, and the fields were 

retrieved after approximately three percent of effective plastic strain had accumulated.  

The values of the fields were retrieved from the elements on the boundary of the 

exclusion region.  Normal and tangential values of stress and strain refer to the angle with 

respect to the crack tip.   

 
 

            
a      b 

 
Figure 5.9   (a) Geometry and loading scenario for mode-I simulations. (b) Geometry and 
         loading for mixed-mode simulations. 
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Mode-I Specimen 

 The results for the mode-I specimen are contained in Figures 5.10-5.14.  The 

accepted direction for crack advance is represented in all figures by a dash-dot black line 

for reference.  Figure 5.10 shows measures of stress as well as common factors used to 

describe the behavior of a material.  The important thing to note from Figure 5.10 is that 

only one field, tangential stress, reached its maximum value at the correct angle.   The 

stress fields in Figure 5.10 were additionally analyzed to determine if a meaningful ratio 

of them existed that reached a maximum value at the correct angle. The stress ratios are 

in Figure 5.11, and it can be seen that the ratio of the minimum and maximum principal 

stresses as well as the ratio of tangential stress and the von Mises stress have desirable 

behavior.  Figure 5.12 presents the standard measures of strain from the elements 

surrounding the exclusion region.  Figure 5.12 also contains the values of dilatation and 

incremental dilatation where dilatation is the trace of the strain tensor.  Because a great 

range exists in the values, a closer look in the region of interest is shown in Figure 5.13. 

It can be seen that in Figure 5.13 only one measure of strain, tangential strain, has a 

maximum value in the correct direction.  Only one ratio of the strain fields,  the absolute 

value of the maximum and minimum principal values of strain, was found to have a 

maximum in the correct direction and is shown in Figure 5.14. 
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Figure 5.10   Stress fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model. 
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Figure 5.11   Various stress ratios compared with the known crack advance direction for a 
           mode-I loading edge crack specimen using a J2 plasticity model. 
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Figure 5.12   Strain fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model. 
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Figure 5.13   A closer view of strain fields compared with the known crack advance  
           direction for a mode-I loading edge crack specimen using a J2 plasticity  
           model. 
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Figure 5.14   The ratio of the maximum principal strain to the minimum principal strain  
           compared with the known crack advance direction for a mode-I loading  
           edge crack specimen using a J2 plasticity model. 
 
   

Mixed-mode Specimen 
 
 The results for the mixed-mode specimen are contained in Figures 5.15-5.19.  The 

accepted direction for crack advance is represented in all figures by a dash-dot black line 

for reference.  There is an absence in the literature of monotonic fracture experiments 

with mixed-mode loading conditions.  Due to this absence an experimental crack path 

could not be found for a simple geometry. The method used to determine the “true” 

direction of crack advance for this comparison is the direction of advance that maximized 

the normal opening stress around the crack tip region. Figure 5.15 shows measures of 

stress as well as common factors used to describe the behavior of a material.  Similar to 

the mode-I results, Figure 5.15 shows that only one field, the tangential stress, reached its 

maximum value at the correct angle.   The tangential stress field’s behavior gives some 
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credence to the “true” direction calculation.  Again the stress fields were analyzed to 

determine if a meaningful ratio of them existed that reached a maximum value at the 

correct angle. The stress ratios are in Figure 5.16, and it can be seen that none of the 

ratios that worked for mode-I loading could predict the angle of advance.  Figure 5.17 

presents the standard measures of strain from the elements surrounding the exclusion 

region with Figure 5.18 giving a closer look in the region of interest.  As in Figure 5.16, 

Figure 5.18 reveals that none of the measures of strain have a maximum value in the 

correct direction.  Figure 5.19 also shows the ratio of the maximum and minimum 

principal values does not align with the correct direction. 
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Figure 5.15   Stress fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model. 
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Figure 5.16   Various stress ratios compared with the known crack advance direction for a 
           mixed-mode loading edge crack specimen using a J2 plasticity model. 
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Figure 5.17   Strain fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model. 
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Figure 5.18   A closer view of strain fields compared with the known crack advance  
          direction for a mixed-mode loading edge crack specimen using a J2    
          plasticity model. 
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Figure 5.19   The ratio of the maximum principal strain to the minimum principal strain  
           compared with the known crack advance direction for a mixed-mode  
           loading edge crack specimen using a J2 plasticity model. 



www.manaraa.com

 141

 It has been shown that the only parameter that exists in simulating ductile fracture 

is the tangential stress to predict the correct direction of crack advance for mode-I loading 

and mixed-mode loading of a non-blunting crack tip within the context of J2 plasticity.  

The next section presents a two parameter method that uses damage to predict fracture. 

 
Two Parameter Crack Advance  

 An intermediate step is to use the damage to determine when the crack will grow 

and define another parameter that is used to find the direction of advance.  The linear 

elastic concepts maximum hoop stress, minimum strain energy density, and maximum 

energy release rate, are all possibilities for this parameter. Pirondi and Dalle Donne 

(2001) performed mixed mode experiments and concluded that cracks propagate in the 

direction of maximum tangential stress or the maximum shear strain depending on the 

mode of loading.  Mediavilla et. al. (2006a) proposed a criterion based on these results 

which is a weighted relationship between maximum hoop stress,  ( )θτθθ , and maximum 

tangential stress, ( )θτ θr , 

( ) ( ) ( ) ( ){ } 10  ,,1max ≤≤−= αθταθταθτ θθθ rm .            (5.1) 

The weight, α, is determined from experiments that indicate the transition from shear to 

tension crack growth.  Mediavilla et. al. (2006b) averaged the angles where the maximum 

damage occurs to get a direction. Averaging the angles gave excellent results predicting 

direction for symmetric geometries, symmetric loading conditions, and a uniform initial 

damage field.  Mediavilla et. al. (2006b) were able to predict a reasonable crack path 

from the maximum damage value location for shear only loading conditions, and note 



www.manaraa.com

 142

that their method would not work in a state of tension where void growth contributes to 

crack advance. 

 Calculating the critical value of damage in the vicinity of the crack tip is 

somewhat nontrivial.  One problem in local fracture simulations it is possible to have a 

narrow band of damage and the location of the band is mesh dependent. If the damage is 

uncoupled from the material strength, the localization of damage can be prevented. In the 

uncoupled approach, the damage does not affect the material until it reaches the critical 

value that causes crack advance. The maximum value of damage occurring in multiple 

places makes it nontrivial to determine the value of damage to use for crack advance.  

One method is to take a small area in the vicinity of the crack tip and use the average 

value for the region as the critical damage value.  Mediavilla et. al. (2006a; 2006b) used a 

semi-circle in front of the crack tip that extended through at least three elements for their 

critical area. The method used for the purposes of this research is to average the values in 

the circular exclusion region. These methods are considered nonlocal approaches to the 

damage value.   

 The equations that are commonly used to model damage mechanisms that cause 

fracture need to be investigated for their suitability of predicting fracture in front of an 

existing macro-crack.  Hom and McMeeking (1989) investigated the effect of a crack on 

void growth for small scale yielding.   They explicitly modeled a void and a crack 

varying the distance between the two.  They found that the void growth rate is double that 

of Rice and Tracey (1969) when the void is in front of a crack tip.  Their result also 

showed that the voids cause the high hydrostatic stress field in front of the crack tip to 
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emanate further away.  This provides further evidence that the existing damage equations 

are not giving realistic results when a crack tip is in the geometry.  

 Mode-I and mixed-mode simulations were run to show that the damage based 

crack advance works with the exclusion region theory.  The mode-I and mixed-mode 

geometry and loading are shown in Figure 5.9a and 5.9b, respectively.  The material 

response was modeled with J2 plasticity based linear isotropic hardening.  The initial 

damage field was chosen to be uniformly assigned a value of 0.01. The separation 

criterion used for these simulations is 

∫=
ER

n da
r

F φ
π

Φ 2 , { }n

n
n F

F
F

sup
= ,  ∫ ⋅=

π

ψ
θθ   ˆ)( rdFn mt            (5.2) 

where m= (-sin (ψ), cos (ψ)) is the unit vector tangent to the proposed direction of 

advance, r is the exclusion region radius, and φ  is the damage value at the integration 

point.  Fn is the normal opening force acting on the boundary of the exclusion region with 

respect to the direction of advance. The magnitude of the separation function is the 

average of the damage values in the exclusion region, while the direction of advance is 

taken from nF .  It is necessary to use something other than damage for direction since 

the material model is not capable of capturing the true mechanisms which are occurring.  

The averaging technique is a nonlocal damage evaluation near the crack tip. The damage 

evolution equation used for the uniform damage simulations is from Goijaerts et. al. 

(2001) 

p
vm

HA
C

ε
σ
σφ && += 11             (5.3) 
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where Hσ  is the hydrostatic stress, vmσ  is the von Mises stress, C controls the onset of 

fracture, and A controls the effect the triaxiality has on the void volume fraction growth. 

The simulations were run with the damage affecting and not affecting the material. 

Regardless of the evolution equation they both gave similar results since the direction is 

not affected by the damage.  The critical value of the separation function was assigned a 

value of 0.05.   

 Mode-I simulation results show that the crack does in fact grow as one would 

expect, straight ahead in Figure 5.20b.  The damage evolved perpendicular to the known 

crack path as expected prior to crack growth, Figure 5.20a.  Similarly for the mixed-mode 

simulation the damage prior to crack advance is accumulating where the kink will occur, 

Figure 5.21a, and not in the direction the crack will grow as shown in Figure 5.21b. 

 Using the damage for the advancement criterion and normal opening force for 

direction gives realistic results.  The results show that this computational framework is 

capable of using damage evolution and accumulation to determine crack advance.  

Modifications to the traditional J2 plasticity used in these simulations are presented next 

in an attempt to capture damage evolution in front of the crack tip. 

 



www.manaraa.com

 145

   
a      b 

 
Figure 5.20   (a) Mode-I damage field prior to crack advance. (b) Mode-I damage field  
           after crack has advance. 
 
 

    
a      b 

 
Figure 5.21   (a) Mixed-mode damage field prior to crack advance. (b) Mixed-mode  
           damage field after crack has advance. 
 

Modified J2 Plasticity 

 To motivate modifying J2 plasticity, a unit cube was considered and subjected to a 

hydrostatic load as shown in Figure 5.22.  According to J2 based plasticity, the material 

will never yield because J2 is deviatoric and no deviatoric component exists in this 
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loading scenario. Now consider a void subjected to the same loading scenario as shown 

in Figure 5.23.  Figure 5.23 shows the resulting plastic strain when using the same 

material model.  Thus, when an explicit void was subjected to a hydrostatic stress state, 

the material yielded as one would expect. But, if one were to represent the void implicitly 

as a void volume fraction parameter in a unit cube, the same plastic strain would never be 

realized.  Referring to Figure 5.1, a crack in ductile materials with particles and oxides 

present would grow as the figure indicates. Therefore even though the plastic strain is 

occurring around the voids, it is not possible to achieve the same strain field unless the 

voids are explicitly modeled in the finite element simulation.  Obviously that is 

impractical and would exhaust any computational resources as well as limit the size of 

simulated geometries.  

 While many J2 based constitutive models exist that haven been proven to predict 

failure of large systems, it has been shown that they are not capable of capturing the 

evolution of damage in front of a crack.  It has also been shown that there are situations 

where an explicit void representation results in accumulated plastic strain and with a 

smeared void representation there is no plastic strain. The area in front of a crack tip is 

considered to also be one of those regions. Experimental evidence supports that mode-I 

loading will make the crack tend to propagate straight ahead resulting from the nucleation 

and growth of voids preceding the crack tip. Because it is not computationally efficient to 

model all pre-existing voids, a smeared void volume fraction is the desired approach.  

The next two variants of J2 plasticity are attempts to capture the damage evolution in 

front of the crack in as simple a manner as possible. 
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Figure 5.22   A unit cube being subjected to a hydrostatic load. 
 
 

 
 
Figure 5.23   A spherical void subjected to a hydrostatic load. 
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Pressure Method I 

 It was shown that hydrostatic pressure applied to a void will cause void growth 

and plastic strain to occur. Noting the area preceding the crack tip has a high pressure 

value, the method of crack advance in ductile materials shown in Figure 5.1, and the lack 

of plastic strain indicated by J2 plasticity in this region, a criterion for damage evolution 

related to the pressure field is postulated.  

 A yield condition for the hydrostatic stress was formulated as 

p
pp

p
dd

y
p HHf ε∆ε∆σσ −+≤)(            (5.4) 

where at step N 

( ) ( ) ( ) ( ) ( )ε∆σσσσ TrKTrTrTrf N
tr
NNN ⋅+=== − 31 ,           (5.5) 

H is the slope of the hardening curve where subscripts d and p denote the deviatoric and 

volumetric response, and superscript p denotes plastic strain.  The material is determined 

to yield once the pressure reaches a critical value, y
pσ . There is no enforcement of 

consistency as in the J2 plasticity theory. Instead, once the pressure reaches this critical 

value, the dilatation is determined to be purely plastic.  The yield value must be affected 

by the deviatoric hardening and is the reason for the second term on the right had side of 

inequality (5.4). The critical value y
pσ  was set initially to a large value to prevent the 

yield from occurring where there is strong deviatoric response. If hardening were 

determined to occur in the von Mises flow rule, then the resulting plastic strain 

contribution elevates the value of the yield pressure making it more difficult to yield 

hydrostatically.  Once yielding is determined to occur hydrostatically, the dilatation is 

used to reduce the hydrostatic yield making it easier for the material to yield in a 
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hydrostatic manner. Thus, there are two competing mechanisms that occur which result in 

focusing the hydrostatic yielding material in a high pressure area absent of deviatoric 

plastic strain.  It is important to note the smaller the resulting hydrostatic yield, the more 

hydrostatic yielding is taking place. This is reverse of the deviatoric flow rule where the 

largest von Mises stress would indicate the most yielding.  

 The method above was implemented in the finite element fracture propagation 

program, FEFRAC.  A mode-I edge crack simulation, Figure 5.9a, was performed.  The 

formulation for the J2 plasticity was not changed and as a result the stress and strain fields 

are the same as in Figures 5.10-5.15.  The new hydrostatic yield and volumetric plastic 

strain values are shown in Figure 5.24 and Figure 5.25 for the elements surrounding the 

exclusion region.  The hydrostatic yield is denoted in Figure 5.24 by HY and has the 

desired behavior of the minimum hydrostatic yield occurring at 180 degrees. The trace of 

plastic strain has a maximum at 135 and 225 degrees. If one were to insert a uniform 

damage field into the simulation and drive the damage by the volumetric strain, the 

largest damage value would be located at the maximum strain location.  Figure 5.25 

shows that the volumetric plastic strain would predict a direction of + 45 degrees which is 

an improvement from the deviatoric plastic strain driven damage.  Figure 5.26 shows a 

new stress ratio similar to triaxiality that uses the hydrostatic yield value instead of the 

pressure. Triaxiality has often been used as a growth term for voids. Once a material 

yields deviatorically the yield stress is equivalent to the value of the von Mises stress so 

the triaxiality could be thought of the ratio of pressure and the deviatoric yield. Now that 

a yield condition has been introduced for the hydrostatic component and the behavior of 

the condition is reverse of the von Mises value, a new ratio of the von Mises stress and 
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the hydrostatic yield is investigated and its behavior is compared to ratios that were in 

Figure 5.11.   The new ratio has good agreement with the accepted direction of crack 

advance.   The ratio is multiplied by a constant so it could be displayed against the other 

ratios, and the multiplication does not affect the behavior of the ratio. 
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Figure 5.24   Stress fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model in addition to a  
           hydrostatic yield condition. 



www.manaraa.com

 151

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0 30 60 90 120 150 180 210 240 270 300 330 360 390

Angle (degrees)

St
ra

in
 (m

m
/m

m
)

Trace(plastic strain)
Dev. Plastic Strain
Direction

 
 

Figure 5.25   Strain fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model in addition to a  
           hydrostatic yield condition. 
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Figure 5.26   Various stress ratios compared with the known crack advance direction for a 
           mode-I loading edge crack specimen using a J2 plasticity model in addition  
           to a hydrostatic yield condition. 
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 The mixed-mode simulation, Figure 5.9b, was performed using the hydrostatic 

yield condition and the new fields are shown with preexisting fields for comparison in 

Figures 5.27-5.29. The hydrostatic yield denoted by HY in Figure 5.27 does not align 

with what is considered to be the correct direction like it did for the mode-I simulation. 

Figure 5.28 shows the magnitude of the deviatoric and volumetric plastic strain and that 

neither would indicate the desired direction. The maximum for the volumetric plastic 

strain is fifty degrees off and the minimum deviatoric plastic strain is twenty degrees off.  

Figure 5.29 shows several stress ratios and the behavior of the new ratio of the von Mises 

stress and the hydrostatic yield.  The new ratio’s maximum is approximately ten degrees 

away from the correct angle, and shows the most promise to be a good measure of 

damage evolution that could predict the correct crack advance direction. 
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Figure 5.27   Stress fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model in addition to            
           a hydrostatic yield condition. 
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Figure 5.28   Strain fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model in addition to  
           a hydrostatic yield condition. 
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Figure 5.29   Various stress ratios compared with the known crack advance direction for a 
          mixed-mode loading edge crack specimen using a J2 plasticity model in  
           addition to a hydrostatic yield condition. 
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 The pressure yield condition introduced in this section creates two new 

parameters, a hydrostatic yield value and volumetric plastic strain. For mode-I 

simulations, it has been shown that both fields could lead to better predictive capabilities 

than J2 plasticity damage evolution. For mixed-mode simulations, only the ratio of the 

von Mises stress and the hydrostatic yield value was found to closely represent the 

correct crack advance direction. The next section enforces the consistency condition and 

whether or not the consistency condition gives better predictive capabilities for crack 

advance direction. 

 
Pressure Method II 

  
 The second method uses the hydrostatic yield condition from the first method but 

the consistency condition is enforced. The resulting volumetric plastic strain would be 

considered the damage variable and could also be thought of void growth in the material. 

The hydrostatic pressure is now in predictor-corrector form which implies that the 

relationship between the pressure and volumetric strain changes once the critical value of 

pressure is reached.  The change in the pressure-volumetric relationship is motivated by 

Hom and McMeeking (1989) who analyzed crack-void interactions and analyzed the 

pressure field preceding a crack tip absent of a void and with the void in front of the 

crack tip. They found that the void actually caused the pressure to decrease between the 

void and the crack.   Nemat-Nasser and Taya (1980) investigated void growth and 

concluded that the localized shear deformations that occur between voids would cause the 

macroscopic response to be plastically compressible. Based on these investigations it is a 

reasonable assumption in the absence of explicit damage representation to postulate the 
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material preceding the crack tip could become compressible and as a result affect the 

pressure-volumetric strain relationship. 

 The development of the modified pressure dependent yield is presented in full 

detail. As in the J2 theory, the elastic predictor-corrector methodology is used.   The 

elastic stress-strain relationship is assumed 

      ( )ITRGC e
N

e
N

e
NN 1111 2: ++++ +== ελεεσ             (5.6) 

where C  is a fourth order tensor of elastic constants, G and λ are the shear modulus and 

Lame parameter, and the elastic strain tensor is represented by 

      p
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Substituting for the strain increment results in 
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The sum of the first three terms is the elastic predictor and is typically called a trial stress 

     ( ) ( )ITRG NNN
TR
N 111 2 +++ ++= ε∆λε∆σσ            (5.9) 

while the last two terms are considered the plastic corrector. For normal J2 flow theory 

the last term would not be present because the plastic strain is assumed to be strictly 

deviatoric and the trace of a deviatoric quantity is 0.0 . 

 Because it is assumed that the plastic strain has a volumetric component, the trace 

of the updated stress becomes 

( ) ( ) ( ) ( ) ( ) ( )ptr
N

ptr
NNN KTrTrTrGTrTrf ε∆σε∆λσσσ 3)32( 1111 −=+−== ++++        (5.10) 

where K is the bulk modulus of the material.  The material is said to have yielded 

hydrostatically if 
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and enforcing the consistency condition 
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The resulting tangent stiffness matrix is 
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 The mode-I simulation in Figure 5.9a was used to determine the capability of the 

volumetric plastic strain as a measure of damage.  The hydrostatic yield denoted by HY is 
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shown in Figure 5.30 and the plastic strain fields are shown in Figure 5.32.   Because this 

method changes the trace of the stress, all of the stress fields will be different than the 

previous pressure method.  Figure 5.30 shows the hydrostatic yield had a minimum and 

the tangential stress had a maximum at the correct angle.  The stress ratios in Figure 5.31 

show that the ratio of von Mises and hydrostatic yield was off by +45 degrees.  The 

volumetric plastic strain’s behavior is shown in Figure 5.32 and also was off by +45 

degrees, but the behavior has better predictive capabilities than the deviatoric plastic 

strain.  The tangential strain’s maximum occurred at the correct angle of advance just as 

it has for all other mode-I simulations.   
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Figure 5.30   Stress fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model in addition to a  
           hydrostatic yield condition with consistency condition enforced. 
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Figure 5.31   Various stress ratios compared with the known crack advance direction for a 
           mode-I loading edge crack specimen using a J2 plasticity model in addition  
           to a hydrostatic yield condition with consistency condition enforced. 
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Figure 5.32   Strain fields compared with the known crack advance direction for a mode-I 
           loading edge crack specimen using a J2 plasticity model in addition to a    
           hydrostatic yield condition with consistency condition enforced. 
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 The mixed-mode simulations were again run with the modified pressure 

dependence material response to see if one of the parameters found to work for mode-I 

simulations would also indicate the correct direction for a mixed-mode case.  The results 

are shown in Figures 5.33-5.35.  The only stress field that gave the approximate direction 

is the tangential stress field as seen in Figure 5.33.  The tangential strain field also 

attained a maximum value near the correct direction as indicated in Figure 5.34.  The new 

ratio that worked well in the previous cases is a poor indicatior for direction of advance 

and is shown along with the rest of the stress ratios in Figure 5.35.  The ratio of the 

tangential strain and von Mises stress did however give a good approximation for 

direction of advance. 
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Figure 5.33   Stress fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model in addition to  
           a hydrostatic yield condition with consistency condition enforced. 
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Figure 5.34   Various stress ratios compared with the known crack advance direction for a 
           mixed-mode loading edge crack specimen using a J2 plasticity model in  
           addition to a hydrostatic yield condition with consistency condition    
           enforced. 
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Figure 5.35   Strain fields compared with the known crack advance direction for a mixed- 
          mode loading edge crack specimen using a J2 plasticity model in addition to  
           a hydrostatic yield condition with consistency condition enforced. 
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 A pressure yield condition that enforced the consistency condition was used to 

determine if the resulting volumetric strain field could indicate a direction of advance. 

The volumetric strain from the yield condition in its present form was not able to capture 

the crack advance angle.  The ratio of the von Mises and the hydrostatic yield value also 

did not show good predictive capabilities within this current context.  A power law 

behavior will be implemented for the softening and hardening terms in the hydrostatic 

yield condition in hopes that a nonlinear response will allow the resulting volumetric 

strain to indicate the correct direction of advance. 

 
Concluding remarks 
 
 It has been shown that J2 plasticity alone is not capable of producing one 

parameter that can drive fracture in varied loading conditions for a non-blunting crack tip. 

An approach that uses two parameters, plastic strain and normal opening force, has been 

investigated for and proven to give realistic predictions for crack propagation in mode-I 

and mixed-mode loading conditions.  J2 plasticity was modified in two ways that 

incorporated pressure dependence into the yielding condition and investigated their 

applicability to predict fracture.  The linear yield condition did show promise when the 

consistency condition was not enforced.  The future work will incorporate power-law 

hardening behavior in the hydrostatic yield condition to allow for a highly nonlinear 

relationship between the yield and the volumetric strain.  The yield conditions for the 

hydrostatic and deviatoric stress components will be coupled instead of decoupled as they 

are in this study.   
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CHAPTER VI 
 

SUMMARY AND FUTURE WORK 
 

 
Summary 
 
 A computational framework was presented that is capable of advancing cracks 

based on damage evolution occurring in ductile material.  An error analysis was 

performed on the exclusion region theory’s implementation, and it was shown that stress 

fields, strain fields, and crack-surface displacements agreed with analytical results for 

linear elastic material behavior. The elastic-plastic results compared well with a 

commercial finite element programs results.  The exclusion region theory was used to 

investigate the angular dependence of the stress and strain fields in J2 plasticity fracture 

simulations.  It was found that only the tangential stress field was capable of predicting 

the crack advance direction for both a mode-I and a mixed-mode loading scenario.  A two 

parameter damage based crack advance was implemented and showed that exclusion 

region theory can accommodate crack growth based on damage. Two variants of J2 

plasticity were postulated that incorporated pressure dependence in the constitutive 

response.  Both variants were investigated to see if a single parameter exists that could 

predict the direction of crack advance based on damage. 
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 Crack-surface displacements were investigated for symmetric cracks emanating 

from a hole in an infinite plate subjected to a remote uniform stress and a partially loaded 

crack face. These configurations were chosen because they are common in fatigue 

simulations for the aerospace industry.  Numerical integration was performed and 

compared to the displacement equations in the literature.  It was shown for the case of 

remote uniform stress, the existing displacement equation was very accurate near the 

crack tip and had its largest error of approximately ten percent where the crack 

intersected the hole.  A new displacement equation was developed whose maximum error 

is now one percent.  The partially loaded crack surface case revealed the existing 

displacement equations are accurate as one moves toward the crack tip from the loading 

position.  But, the error increases rapidly between the loading and the crack’s intersection 

with the hole.   

 
Future Work 
 
 A variant of J2 plasticity utilizing a pressure dependent yield condition will be 

further investigated in hopes of producing a variable that indicates proper crack advance 

direction and made to include a non-linear evolution for both the softening and hardening 

terms.  It was noted in the last chapter an assumption had to be made for the crack 

advance direction in a mixed-mode loading scenario.  No results could be found in the 

literature for a mixed-mode monotonic fracture experiment.  Research could be 

conducted to present a standard suite of data to the community that could be used to 

determine if various ductile fracture methodologies can in fact work for both shear and 

tension experiments.  The new crack surface displacement equation and the numerical 
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integration method for the partially loaded crack surface will be implemented into a 

fatigue life prediction program to investigate how the new, more accurate results affect 

life predictions.   
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